PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The role of recyclates in the polyurethane industry: Environmental and economic aspects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of this article was to provide an overview of the polyurethane industry and waste treatment methods to identify the best method for polyurethane (PUR) reprocessing (recycling). To understand the need for recycling, existing knowledge will be referenced. Many literature studies discuss the role of recyclates in the polyurethane industry. According to these, the best available options to recapture value, for example, from raw materials, are polyurethane recycling and energy recovery. The research material was created via the glycolysis of polyurethane foam scrap. The experiments in this work include the glycolysis of polyurethane foam with a complex discussion of materials (polyurethane foam, glycols, catalysts, and properties of the obtained recyclate). Based on the research, analyses, and tests carried out related to glycolysis, the most appropriate conditions to recover polyols from scrap were the following reaction conditions: temperature 170–190°C; pH – basic; and atmosphere (air), which was the same for all samples. A total of 14 samples were tested. Two samples GL:12 [6:1] and GL 13 [8:1] were futher investigated. The numbers presented in brackets [6:1] mean that a ratio of 180 g of polyurethane foam and 30 g 1-3-propyleneglycol was used. The outstanding properties of glycolysate samples called GL:12 [6:1] and GL 13 [8:1] were achieved thanks to the ranges of the basic parameters (dosage time, time after dosage). The sample GL:12 [6:1] – dosage time 20 min and time after dosage 15 min and the GL 13 [8:1] sample – dosage time 22 min and time after dosage 15 min. The apparatus used for glycolysis included: reactor +heater, stirrer, feeder, reflux condenser, thermocouple, and temperature regulator. By analyzing the obtained results, it can be concluded that the most promising polyurethane waste management process is glycolysis.
Rocznik
Strony
29--35
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
  • University of Gdansk, Division of Maritime Economy Department of Maritime Transport and Seaborn Trade, Faculty of Economics 119/121 Armii Krajowej St., 81-824 Sopot, Poland
Bibliografia
  • 1. Bielenia, M. (2007) The role of recyclates in polyurethane industry. Thesis unpublished work.
  • 2. Campbell, G.A. & Meluch, W.C. (1976) Polyurethane foam recycling. Superheated steam hydrolysis. Environmental Science and Technology 10, 2, pp. 182–185.
  • 3. CLG (2008) The European Commission’s proposed Construction Products Regulation compounds in municipal solid waste incineration plants. Part II: Co-combustion of Energy Engineering and Environmental Protection Publications, Espoo.
  • 4. Eunomia (2017) EU plastic waste generation. [Online] Available from: https://www.eunomia.co.uk/reports-tools/ [Accessed: June 12, 2020].
  • 5. European Parliament (2018) Plastic waste and recycling in the EU: facts and figures. [Online] December 19. Available from: https://www.europarl.europa.eu/news/en/headlines/ society/20181212STO21610/plactic-waste-and-recyclingin-the-eu-facts-and-figures [Accessed: June 12, 2020].
  • 6. Goleń, M. (2017) Polish municipal waste in the context of plans to transform the European Union economy to circular economy model. Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach 310, pp. 236– 245.
  • 7. ISOPA (2001) Recycling and recovering of polyurethanes. ISOPA fact sheet. [Online] June. Available from: http:// www.isopa.org [Accessed: June 12, 2020].
  • 8. Mahmood Zia, K., Nawaz Bhatti, H. & Ahmad Bhatti, I. (2007) Methods for polyurethane and polyurethane composites, recycling and recovery: A review. Reactive and Functional Polymers 67, 8, pp. 675–692.
  • 9. Mahonney, L.R., Weiner, S.A. & Ferris, F.C. (1974) Hydrolysis of polyurethane foam waste. Environmental Science and Technology 8, 2, pp. 135–139, doi: 10.1021/ es60087a010.
  • 10. Rittmeyer, C., Kaese, P., Vehlow, J. & Vilöhr, W. (1994) Decomposition of organohalogen compounds in municipal waste incineration plants. Part II: Co-combustion of CFC containing polyurethane foams. Chemosphere 28(8), pp. 1455–1465.
  • 11. Scheirs, J. (1998) Polymer Recycling: Science, Technology and Applications. Wiley.
  • 12. Sołtysiński, M., Piszczek, K., Romecki, D., Narożniak, S., Tomaszewska, J. & Skórczewska, K. (2018) Conversion of polyurethane technological foam waste and post-consumer polyurethane mattresses into polyols – industrial applications. Polimery 63 (3), pp. 234–238.
  • 13. United Nations (1987) Our Common Future. [Online] Available from: https://www.are.admin.ch/are/en/home/media/ publications/sustainable-development/brundtland-report. html [Accessed: June 12, 2020].
  • 14. Weigand, E. (1996) Properties and applications of recycled polyurethanes. In: Branderup, J., Bittner, M., Menges, G. & Micheali, W. (eds) Recycling and recovery of plastics. Section 7.10. Munich, Germany: Hanser Publishers.
  • 15. Wu, C.-H., Chang, C.-Y. & Li, J.-K. (2002) Glycolysis of rigid polyurethane from waste refigerators. Polymer Degradation and Stability 75,3, pp. 413–421.
  • 16. Zevenhoven, R. (2004) Treatment and disposal of polyurethane wastes: options for recovery and recycling. HUT Energy Engineering and Environmental Protection Publications, No. TKK-ENY-19.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a1d9049-5488-4e85-8e31-368191b6cc72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.