Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The direct measurement method of AM-to-PM phenomena in fast silicon and InGaAs photodiodes is described. The setup is simple, relatively inexpensive and allows fast and precise measurements not only in a laboratory environment. During sample tests, the authors have found that the influence of bias voltage on the phase shift of an optical signal conversion is significant. The reported effect together with the influence of modulation depth on phase shift (AM-to-PM conversion) has a negative impact on an optical signal reception especially in coherent applications. The authors show that, with our proposed setups, it is possible to find optimal bias voltage and optimal optical power in order to reduce electrical phase noise of the photodetector.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e152678
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
- Wroclaw University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wroclaw University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Lasertex Co. Sp. z o.o., ul. Swojczycka 26, 51-501 Wroclaw, Poland
Bibliografia
- 1. Hinkley, N. et al. An atomic clock with 10–18 instability. Science, 341, 1215–1218 (2013). https://doi.org/10.1126/science.1240420
- 2. Fortier, T. M. et al. Generation of ultra stable microwaves via optical frequency division. Nature Photonics, 5, 425–429 (2011). https://doi.org/10.1038/nphoton.2011.121
- 3. Ma, L.-S. et al. Optical frequency synthesis and comparison with uncertainty at the 10−19 level. Science, 303, 1843–1845 (2004). https://doi.org/10.1126/science.1095092
- 4. Predehl, K. et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science, 336, 441–444 (2012). https://doi.org/10.1126/science.1218442
- 5. Lisdat, C. et al. A clock network for geodesy and fundamental science. Nature Communications, 7, 12443 (2016). https://doi.org/10.1038/ncomms12443
- 6. Eliyahu, D., Seidel, D. & Maleki, L. RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator. IEEE Transactions on Microwave Theory and Techniques, 56, 449–456 (2008). https://doi.org/10.1109/TMTT.2007.914640
- 7. Guillory, J., García-Márquez, J., Alexandre, C., Truong, D. & Wallerand, J.-P. Characterization and reduction of the amplitude-to-phase conversion effects in telemetry. Measurement Science and Technology, 26, 084006 (2015). https://doi.org/10.1088/0957-0233/26/8/084006
- 8. Zang, J. et al. Reduction of amplitude-to-phase conversion in charge-compensated modified unitraveling carrier photodiodes. Journal of Lightwave Technology, 36, 5218–5223 (2018). https://doi.org/10.1109/JLT.2018.2871882
- 9. Davila-Rodriguez, J. et al. Optimizing the linearity in high-speed photodiodes. Optics Express, 26, 30532–30545 (2018). https://doi.org/10.1364/OE.26.030532
- 10. Xie, X., Zang, J., Beling, A. & Campbell, J. Characterization of amplitude noise to phase noise conversion in charge-compensated modified unitravelling carrier photodiodes. Journal of Lightwave Technology, 35, 1718–1724 (2017). https://doi.org/10.1109/JLT.2016.2641967
- 11. Bouchand, R., Nicolodi, D., Xie, X., Alexandre, C. & Le Coq, Y. Accurate control of optoelectronic amplitude to phase noise conversion in photodetection of ultra-fast optical pulses. Optics Express, 25, 12268–12281 (2017). https://doi.org/10.1364/OE.25.012268
- 12. Matavulj, P. S., Golubović, D. S. & Radunović, J. B. Comparison of nonlinear and nonstationary response of conventional and resonant cavity enhanced p-i-n photodiode. Journal of Applied Physics, 87, 3086–3092 (2000). https://doi.org/10.1063/1.372304
- 13. Sun, J., Xu, B., Sun, W., Zhu, S. & Zhu, N. The effect of bias and frequency on amplitude to phase conversion of photodiodes. IEEE Photonics Journal, 12, 1–10 (2020). https://doi.org/10.1109/JPHOT.2020.3013836
- 14. Kang, L. & Kolner, B. H. Characterization of AM-to-PM conversion in silicon p-i-n photodiodes. IEEE Photonics Technology Letters, 31, 1001–1004 (2019). https://doi.org/10.1109/LPT.2019.2914607
- 15. Phung, D.-H., Merzougui, M., Alexandre, C. & Lintz, M. Phase measurement of a microwave optical modulation: characterisation and reduction of amplitude-to-phase conversion in 1.5 μm high bandwidth photodiodes. Journal of Lightwave Technology, 32, 3759–3767 (2014). https://doi.org/10.1109/JLT.2014.2312457
- 16. Hu, Y. et al. Computational study of amplitude-to-phase conversion in a modified unitraveling carrier photodetector. IEEE Photonics Journal, 9, 1–11 (2017). https://doi.org/10.1109/JPHOT.2017.2682251
- 17. Podżorny, T., Budzyń, G. & Rzepka, J. Linearization methods of laser interferometers for pico/nano positioning stages. Optik, 124, 6345–6348 (2013). https://doi.org/10.1016/j.ijleo.2013.05.054
- 18. Natrella, M. et al. Accurate equivalent circuit model for millimetre-wave UTC photodiodes. Optics Express, 24, 4698–4713 (2016). https://doi.org/10.1364/OE.24.004698
- 19. Xu, Z. & Gao, J. Semi‐analytical small signal parameter extraction method for PIN photodiode. IET Optoelectronics, 11, 103–107 (2017). https://doi.org/10.1049/iet-opt.2016.0051
- 20. Kassem, A. & Darwazeh, I. Equivalent Circuit Model for Large-Area Photodiodes for VLC Systems. In 2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), 467–472 (IEEE, 2022). https://doi.org/10.1109/CSNDSP54353.2022.9908056
- 21. Wang, G. et al. A time-delay equivalent-circuit model of ultrafast pi-n photodiodes. IEEE Transactions on Microwave Theory and Techniques, 51, 1227–1233 (2003). https://doi.org/10.1109/TMTT.2003.809642
- 22. Song, Z. et al. Analysis of AM-to-PM conversion in MUTC photodiodes based on an equivalent circuit model. Optics Express, 29, 33582–33591 (2021). https://doi.org/10.1364/OE.441677
- 23. Wun, J.-M., Wang, Y.-W., Chen, Y.-H., Bowers, J. E. & Shi, J.-W. GaSb-Based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength. IEEE Transactions on Electron Devices, 63, 2796–2801 (2016). https://doi.org/10.1109/TED.2016.2561202
- 24. Abdallah, Z., Rumeau, A., Fernandez, A., Cibiel, G. & Llopis, O. Nonlinear equivalent-circuit modeling of a fast photodiode. IEEE Photonics Technology Letters, 26, 1840–1842 (2014). https://doi.org/10.1109/LPT.2014.2337352
- 25. Jou, J.-J. et al. Time-delay circuit model of high-speed p-i-n photodiodes. IEEE Photonics Technology Letters, 14, 525–527 (2002). https://doi.org/10.1109/68.992599
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a18e8c6-f02e-4e0e-b743-ffdb6ada2401