PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of NiO–Al2O3 composite and its conductivity in biogas for solid oxide fuel cell

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
NiO–Al2O3 nanocomposite has been synthesized by mixing combustion synthesized powders. The nanocomposite is an effective anode/anode functional layer for intermediate temperature solid oxide fuel cells. The TEM of NiO and Al2O3 revealed spherical particles of 30 nm and platelets of 70 nm, respectively. The XRD analysis of NiO– Al2O3 composite sintered at 900 °C showed presence of cubic NiO and rhombohedral α- Al2O3 which were chemically stable. However, above 1200 °C Ni Al2O4 started to appear. The conductivity of NiO– Al2O3 was the highest in hydrogen (4.3 × 10–3 S/cm at 600 °C). In biogas, the conductivity was 3.2 × 10–3S/cm with the activation energy of 0.67 eV. The stability of the composite in biogas was also examined.
Wydawca
Rocznik
Strony
266--274
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Department of Physics, Shivaji University, Kolhapur, India-416004
autor
  • Electrochemical Energy Materials Laboratory, Department of Physics, Rajaram College, Kolhapur, India-416004
autor
  • Catalan Institute of Nanoscience and Nanotechnology, Campus UAB, Spain
autor
  • Department of Physics, Shivaji University, Kolhapur, India-416004
Bibliografia
  • [1] Readman J.E., Olafsen A., Smith J.B., Blom R., nerg. Fuel, 20 (2006), 1382.
  • [2] Johansson E., Mattisson T., Lyngfelt A., Hunman H., Fuel, 85 (2006), 1428.
  • [3] Kaewpuang S., Inazu K., Kobayashi T., Aika K., ater Res., 38 (2004), 778.
  • [4] Azurdia J.A., Marchal J., Shea P., Sun H., Pan X.Q., Laine R.M., Chem. Mater., 18 (2006), 731.
  • [5] Zhang X., Liu J., Jing Y., Xie Y., Appl. Catal., 240 (2003), 143.
  • [6] Chokkaram S., Srinivasan R., Milburn D.R., Davis B.H., J. Mol. Catal. A-Chem., 121 (1997), 157.
  • [7] Choi J.S., Moon K.I., Kim Y.G., Lee J.S., Kim C.H., Trimm D.L., Catal. Lett., 52 (1998), 43.
  • [8] Fei J.H., Hou Z.Y., Zheng X.M., Yashima T.S., Catal. Lett., 98 (2004), 241.
  • [9] Avendano E., Azens A., Niklasson G.A., Granqvist C.G., Sol. Energ. Mat. Sol. C., 84 (2004), 337.
  • [10] Vijaya J.J., Kennedy L.J., Sekaran G., Nagaraja K.S., Mater. Lett., 61 (2007), 5213.
  • [11] Abe O., Takata S., Ohwa Y., J. Eur. Ceram. Soc., 24 (2004), 489.
  • [12] Chen Y.Z., Shao Z.P., Xu N.P., Energ. Fuel, 22 (2008), 1873.
  • [13] Eguchi K., Kunisa Y., Kayano M., Sekizawa K., Yano S., Arai H., Denki Kagaku, 64 (1996), 596.
  • [14] Li C., Li C., Xing Y., Xie Y., Long H., Rare Metals, 25 (2006), 273.
  • [15] Hoboken N.J., J. Therm. Spray Techn., 16 (2007), 306.
  • [16] Wang W., Zhou W., Ran R., Cai R., Shao Z.P., Electrochem. Commun., 11 (2009), 194.
  • [17] Tao S., Zhan Z., Meng G., J. Mater. Sci. Lett., 18 (1999), 707.
  • [18] Fa L., Hui X., Dong-Mei Z., Wan-Cheng Z., T. Nonferr. Metal Soc., 17 (2007), 1400.
  • [19] Jadhav L.D., Patil S.P., Chavan A.U., Jamale A.P., Puri V.R., Micro Nano Lett., 6 (2011), 812.
  • [20] Jadhav L.D., Patil S.P., Jamale A.P., Chavan A.U., Mater. Sci. Forum, 757 (2013), 85.
  • [21] Jadhav L.D., Chourashiya M.G., Jamale A.P., Chavan A.U., Patil S.P., J. Alloy. Compd., 506 (2010), 739.
  • [22] Wang W., Ran R., Su C., Shao Z., Jung D., Seo W.S., Lee S.M., Int. J. Hydrogen Energ., 36 (2011), 10958.
  • [23] Hao Z.G., Zhu Q.S., Jiang Z., Hou B.L., Li H.Z., Int. J. Hydrogen Energ., 90 (2009), 113.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a17e21d-021f-4ec5-87f2-65f877c00005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.