PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical emission spectra of Zn and Bi in pulsed magnetron plasma

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Spektroskopia emisyjna plazmy zasilanej impulsowo w trakcie magnetronowego rozpylania stopu Zn-Bi
Języki publikacji
EN
Abstrakty
EN
This study aimed at determining the relations between technological parameters of sputtering process - power discharge, the targetsubstrate distance, working gas pressure and the chemical composition of pulsed magnetron plasma by means of optical spectrophotometry. Planar 0.90Zn-0.10Bi target was sputtered in Ar, O2 and in the atmosphere of the both gases mixture. Optical emission spectra were measured in 200800 nm wavelength range.
PL
Za pomocą spektroskopii optycznej określono korelacje pomiędzy parametrami procesu rozpylania - moc wyładowania, odległość target-podłoże, ciśnienie gazu, a składem chemicznym plazmy magnetronowego wyładowania jarzeniowego. W badaniach zastosowano stop 0,90Zn-0,10Bi. Target rozpylano w atmosferze argonu (Ar), tlenu (O2) oraz mieszaninie obu tych gazów. Widma emisyjne rejestrowano w zakresie długości fal od 200-800 nm.
Rocznik
Strony
324--326
Opis fizyczny
Bibliogr. 27 poz., wykr.
Twórcy
autor
  • Wroclaw University of Technology, Institute of Electrical Engineering Fundamentals, Wybrzeze Wyspanskiego 27, 50-370 Wrocław
autor
  • Electrotechnical Institute Division of Electrotechnology and Materials Science, M. Sklodowskiej-Curie 55/61, 50-369 Wroclaw
Bibliografia
  • [1] Yoo D.-G., Nam S.H., Kim M.H., Jeong S.H., Jee H.-G., Lee H.J., Lee N.-E., Hong B.Y., Kim Y.J., Jung D., Boo J.-H., Fabrication of the ZnO thin films using wet-chemical etching processes on application for organic light emitting diode (OLED) device, Surface & Coatings Technology, 202 (2008), 5476–5479.
  • [2] Comini E., Baratto C., Faglia G., Ferroni M., Vomiero A., Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors, Progress in Materials Science, 54 (2009), 1–67.
  • [3] Djurisić A.B., Ng A.M.C., Chen X.Y., ZnO nanostructures for optoelectronics: Material properties and device applications Progress in Quantum Electronics, 34 (2010), 191–259.
  • [4] Chang R.C., Chu S.Y., Hong C.S., Chuang Y.T., An investigation of preferred orientation of doped ZnO films on the 36° YX-LiTaO3 substrates and fabrication of Love-mode devices, Surface & Coatings Technology, 200 (2006), 3235–3240.
  • [5] Liangyuanb C., Shouli B., Guojuna Z., Dianqinga L., Aifana C., Liu C.C., Synthesis of ZnO-SnO2 nanocomposites by microemulsion and sensing properties for NO2, Sensors and Actuators B, 134 (2008), 360–366.
  • [6] Madan A., Flexible displays and stable high efficiency four terminal solar cells using thin film silicon technology, Surface & Coatings Technology, 200 (2005), 1907–1912.
  • [7] Saraswathya V., Song H.W., Improving the durability of concrete by using inhibitors, Building and Environment, 42 (2007), 464–472.
  • [8] Li Q., Mahendra S., Lyon D.Y., Brunet L., Liga M.V., Li D., Alvarez P.J.J., Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications, Water Research 42 (2008), 4591–4602.
  • [9] Goldsmith S., Filtered vacuum arc deposition of undoped and doped ZnO thin films: Electrical, optical, and structural properties, Surface & Coatings Technology, 201 (2006), 3993–3999.
  • [10] Jeong S.H., Park B.N., Lee S.-B., Boo J.-H., Metal-doped ZnO thin films: Synthesis and characterizations, Surface & Coatings Technology, 201 (2007), 5318–5322.
  • [11] Çetin A., Kibar R., Ayvacıklı M., Tuncer Y., Buchal Ch., Townsend P.D., Karali T., Selvi S., Can N., Optical properties of Tb implantation into ZnO, Surface & Coatings Technology, 201 (2007), 8534–8538.
  • [12] Lee H.W., Lau S.P., Wang Y.G., Tse K.Y., Hng H.H., Tay B.K., Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique, Journal of Crystal Growth, 268 (2004), 596–601.
  • [13] Jiang M., Liu X., Wang H., Conductive and transparent Bidped ZnO thin films prepared by rf magnetron sputtering, Surface & Coatings Technology, 203 (2009), 3750–3753.
  • [14] Haga K., Kamidaira M., Kashiwaba Y., Sekiguchi T., Watanabe H., ZnO thin films prepared by remote plasmaenhanced CVD method, Journal of Crystal Growth, 214/215 (2000), 77–80.
  • [15] Agarwal D.C., Avasthi D.K., Singh F., Kabiraj D., Kulariya P.K., Sulania I., Pivin J.C., Chauhan R.S., Swift heavy ion induced structural modification of atom beam sputtered ZnO thin film. Surface & Coatings Technology, 203 (2009), 2427–2431.
  • [16] Lim J., Lee C., Effects of substrate temperature on the microstructure and photoluminescence properties of ZnO thin films prepared by atomic layer deposition, Thin Solid Films, 515 (2007), 3335–3338.
  • [17] Restrepo-Parra E., Moreno-Montoya L.E., Arango-Arango P.J., ZnO thin films growth by pulsed vacuum arc discharge, Surface & Coatings Technology, 204 (2009), 271–276.
  • [18] Winfield R.J., Koh L.H.K, O’Brien S., Crean G.M., Excimer laser processing of ZnO thin films prepared by the sol-gel process, Applied Surface Science, 254 (2007), 855–858.
  • [19] Helmersson U., Lattemann M., Bahlmark J., Ehiasarian A.P., Gudmundsson J.T., Ionized physical vapor deposition (IPVD): A review of technology and application, Thin Solid Films, 513 (2006), 1-24.
  • [20] Xiang Y., Chengbiao W., Yang L., Deyang Y., Tingyan X., Recent Developments in Magnetron Sputtering, Plasma Science & Technology, 1.8 (2006), n.3, 337-343
  • [21] Sarakinos K., Alami J., Konstantinidis S., High power pulsed magnetron sputtering: A review on scientific and engineering state of the art, Surface & Coatings Technology, 204 (2010), 1661-1684.
  • [22] Zhang D., Fan P., Cai X., Huang J., Ru L., Zheng Z., Liang G., Huang Y., Properties of ZnO thin films deposited by DC reactive magnetron sputtering under different plasma power, Appl Phys A, 97 (2009), 437–441.
  • [23] Wang Y., Chu B., Structural and optical properties of ZnO thin films on (111) CaF2 substrates grown by magnetron sputtering, Superlattices and Microstructures, 44 (2008), 54–61.
  • [24] Mista W., Ziaja J., Gubański A., Varistor performance of nanocrystalline Zn–Bi–O thin films prepared by reactive RF magnetron sputtering at room temperature, Vaccum, 74 (2004), 293-296
  • [25] Posadowski W.M., Wiatrowski A., Dora J., Radzimski Z.J., Magnetron sputtering process control by medium-frequency Power supply parameter, Thin Solid Films, 516 (2008), 4478–4482.
  • [26] Ziaja J., ZnO thin film deposition with pulsed magnetron sputtering, Przegląd Elektrotechniczny, 83 (2007), nr.11, 235-239.
  • [27] Ziaja J., Studying of Zn, Bi, O2, Ar emission spectra in pulsed magnetron plasma, Proceedings of 3rd International Conference on Advances in Processing Testing and Applications of Dielectric Materials, 2007, 265-269.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a140874-00ae-490c-9533-a5db8431e5cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.