Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Most of machine breakdowns relate to bearing failures thus it is very important to diagnose bearing conditions. The main purpose of the study was to classify the condition of bearings and identify defective ones based on visual inspection and the values of classic parameters of the acceleration signal vibration, such as Peak, RMS, Kurtosis. The results were compared to parameters provided by the SPM method. All vibration parameters were estimated for high pass filtered signals where filters had following cut-off frequencies 0.5; 1, 2, 5 and 8 kHz. Bearings were tested on the laboratory test bench being built at the Silesian University of Technology. Based on the signal analysis and visual inspections it can be stated that there is agreement in the assessment of the conditions between the parameters of the SPM method and the Peak and RMS parameters. It was observed that the sensitivity to the existence of low-intensity defects increases when the vibration parameters are determined for signals in the band above 2kHz.
Czasopismo
Rocznik
Tom
Strony
art. no. 2020212
Opis fizyczny
Bibliogr. 5 poz., il. kolor., fot., wykr.
Twórcy
autor
- Silesian University of Technology
autor
- Silesian University of Technology
autor
- Silesian University of Technology
Bibliografia
- 1. T. Williams , X. Rbadeneira, S. Billington, T. Kurfess, Rolling element bearing diagnostics in run-to-failure lifetime testing. Mechanical Systems and Signal Processing 15(5) (2001) 979 - 993, doi:10.1006/mssp.2001.1418.
- 2. R. B. Randall, J. Antoni, Rolling element bearing diagnostics—A tutorial, Mechanical Systems and Signal Processing 25 (2011) 485-520.
- 3. A. Boudiaf, A, Djebala, et al, A summary of vibration analysis techniques for fault detection and diagnosis in bearing, 8th International Conference on Modelling, Identification and Control (ICMIC), 2016.
- 4. A. Nabhan, N. M. Ghazaly, A. Samy, M.O Mousa, Bearing Fault Detection Techniques -A Review, Turkish Journal of Engineering, Sciences and Technology 3 (2015).
- 5. T. Lin, Y. Chen, D. Yang and Y. Chen, New Method for Industry 4.0 Machine Status Prediction - A Case Study with the Machine of a Spring Factory, 2016 International Computer Symposium (ICS), Chiayi, 2016 322-326.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a0ea5b5-15ab-499d-95eb-3412fd3e10e3