PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reducing Diesel Engine Emission using Reactivity Controlled Approach

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Several automobile manufacturers are interested in investigating of dual fuel internal combustion engines, due to high efficiency and low emissions. Many alternative fuels have been used in dual fuel mode for IC engine, such as methane, hydrogen, and natural gas. In the present study, a reactivity controlled compression ignition (RCCI) engine using gasoline/diesel (G/D) dual fuel has been investigated. The effect of mixing gasoline with diesel fuel on combustion characteristic, engine performance and emissions has been studied. The gasoline was injected in the engine intake port, to produce a homogeneous mixture with air. The diesel fuel was injected directly to the combustion chamber during compression stroke to initiate the combustion process. A direct injection compression ignition engine has been built and simulated using ANSYS Forte professional code. The gasoline amount in the simulation varied from (50%-80%) by volume. The diesel fuel was injected to the cylinder in two stages. The model has been validated and calibrated for neat diesel fuel using available data from the literature. The results show that the heat release rate and the cylinder pressure increased when the amount of added gasoline is between 50%-60% volume of the total injected fuels, compared to the neat diesel fuel. Further addition of gasoline will have a contrary effect. In addition, the combustion duration is extended drastically when the gasoline ratio is higher than 60% which results in an incomplete combustion. The NO emission decreased drastically as the gasoline ratio increased. Moreover, addition of gasoline to the mixture increased the engine power, thermal efficiency and combustion efficiency compared to neat diesel fuel.
Słowa kluczowe
Rocznik
Strony
94--103
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical Engineering, Applied Science Private University, Amman, Jordan
Bibliografia
  • 1. ANSYS Forte 17.0, ANSYS: San Diego, 2015.
  • 2. Benajes J, Molina S, Garcia A, Belarte E, Vanvolsem M. 2014. An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels. Applied Thermal Engineering, (63), 66–76.
  • 3. Cha J, Kwon S, Park S. 2011. An experimental and modelling study of the combustion and emission characteristics for gasoline-diesel dual-fuel engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, (225), 801–810.
  • 4. Chen G, Shen Y, Zhang Q, Yao M, Zheng Z, Liu H. Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran-diesel, n-butanol-diesel and gasoline-diesel blends. Energy 54 (2013) 333–342.
  • 5. Chen Huang, Mingfa Yao, Xingcai Lu, Zhen Huang. 2009. Study of dimethyl ether homogeneous charge compression ignition combustion process using a multi-dimensional computational fluid dynamics model. International Journal of Thermal Sciences, (48), 1814–1822.
  • 6. Ghazal O. Performance and combustion characteristic of CI engine fueled with hydrogen enriched diesel. Int. J. hydrogen energy 38 (2013) 15469–15476.
  • 7. Han D, Guang H, Yang Z, Lu X, Huang Z. 2013. Premixed ignition characteristics of blends of gasoline and diesel-like fuels on a rapid compression machine. Thermal Science, (17), 1–10.
  • 8. Junjun Ma, Xingcai Lü, Libin Ji, Zhen Huang. 2008. An experimental study of HCCI-DI combustion and emissions in a diesel engine with dual fuel. International Journal of Thermal Sciences (47) 1235–1242.
  • 9. Kim DS, Kim MU, Lee CS. 2007. Combustion and emission characteristics of a partial homogeneous charge compression ignition engine when using two-stage injection. Combustion Science and Technology 179531–551.
  • 10. Kim DS, Kim MU, Lee CS. Effect of premixed gasoline fuel on the combustion characteristics of compression ignition engine. Energy & Fuels 18 (2004) 1213–1219.
  • 11. Lopez JJ, Novella R, Garcia A, Winklinger JF. Investigation of the ignition and combustion processes of a dual-fuel spray under diesel-like conditions using computational fluid dynamics (CFD) modeling. Mathematical and Computer Modelling (57) 2013 1897–1906.
  • 12. Mattarelli E, Rinaldini CA, Golovitchev V. 2014. CFD-3D analysis of a light duty Dual Fuel (Diesel/ Natural Gas) combustion engine. Energy Procedia, (45), 929–937.
  • 13. Micklow GJ, Gong W. 2002. Mechanism of hydrocarbon reduction using multiple injection in a natural gas fuelled/micro-pilot diesel ignition engine. Int. J. of Engine Research, (3), 13–20.
  • 14. Miller Jothi N.K., G. Nagarajan, S. Renganarayanan. 2008. LPG fueled diesel engine using diethyl ether with exhaust gas recirculation. Int. Journal of Thermal Sciences (47), 450–457.
  • 15. Mousavi SM, Saray RK, Poorghasemi K, Maghbouli A. A numerical investigation on combustion and emission characteristics of a dual fuel engine at part load condition. Fuel 166 (2016) 309–319.
  • 16. Papagiannakis RG, Hountalas DT, Rakopoulos CD. 2007. Theoretical study of the effects of pilot fuel quantity and its injection timing on the performance and emissions of a dual fuel diesel engine. Energy Conversion and Management (48) 2951–2961. DOI:10.1016/j.enconman.2007.07.003
  • 17. Park SH, Youn IM, Lim Y, Lee CS. 2013. Influence of the mixture of gasoline and diesel fuels on droplet atomization, combustion, and exhaust emission characteristics in a compression ignition engine. Fuel Processing Technology, (106), 392–401.
  • 18. Puduppakkam KV, Liang L, Naik CV, Meeks E, Kokjohn SL, Reitz RD. Use of detailed kinetics and advanced chemistry-solution techniques in CFD to investigate dual-fuel engine concepts. SAE International (2011) 2011–01–0895
  • 19. Rajendra Prasath B., P. Tamilporai, Mohd.F. Shabir. 2010. Analysis of combustion, performance and emission characteristics of low heat rejection engine using biodiesel. International Journal of Thermal Sciences, (49), 2483–2490.
  • 20. Sezer I. Thermodynamic, performance and emission investigation of a diesel engine running on dimethyl ether and diethyl ether. Int. Journal of Thermal Sciences 50 (2011) 1594–1603
  • 21. Splitter D, Wissink M, Kokjohn S, Reitz R. 2012. Effect of compression ratio and piston geometry on RCCI load limits and efficiency, SAE Int. J. Engines 2012–01–0383.
  • 22. Won HW, Heinz P, Tait N, Kalghatgi G. 2012. Some effects of gasoline and diesel mixtures on partially premixed combustion and comparison with the practical fuels gasoline and diesel in a compression ignition engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, (226). 1259.
  • 23. Yang, B., Li, S., Zheng, Z., Yao, M. et al., “A Comparative Study on Different Dual-Fuel Combustion Modes Fuelled with Gasoline and Diesel,” SAE Technical Paper 2012–01–0694, 2012, doi: 10.4271/2012–01–0694.
  • 24. Yokota H, Kudo Y, Nakajima H, Kakegawa T. A new concept for low emission diesel combustion. SAE Paper 970891
  • 25. Zhang, J. Effects of intake air temperature on homogenous charge compression ignition combustion and emissions with gasoline and n-heptane. Thermal Science 19 (2015) 1897–1906. DOI: 10.2298/TSCI140524174.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a047ea3-6c64-49ac-b128-c4b3f1659cee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.