Identyfikatory
Warianty tytułu
The possibility to use natural materials as supports of biomass during the RBBR decolourization process involving Coriolopsis gallica
Języki publikacji
Abstrakty
Materiały naturalne będące odpadami poprodukcyjnymi branży spożywczej można wykorzystać jako nośniki biomasy grzybów. Szczególnie grzyby tzw. zgnilizny drewna łatwo kolonizują wyżej wymienione materiały. Jednocześnie grzyby zaliczane do tej grupy są wykazują wysoki potencjał degradacyjny różnych ksenobiotyków, m.in. barwników syntetycznych. Celem niniejszej pracy było określenie wpływu immobilizacji grzybni Coriolopsis gallica na efektywność dekoloryzacji antrachinonowego barwnika RBBR (brylantowy błękit remazolowy R). W badaniach przetestowano 6 materiałów odpadowych (siano, trociny, pestki czereśni, pestki brzoskwiń, łupiny orzecha włoskiego i łupiny orzecha ziemnego) pod kątem możliwości wykorzystania ich w immobilizacji biomasy szczepu C. gallica. Intensywny wzrost grzybni na nośniku uzyskano jedynie w przypadku łupin orzecha ziemnego, trocin i siana. Nośniki te najmocniej sorbowały dodany do podłoża RBBR (7-12% w ciągu 4 h). Immobilizacja szczepu na tych nośnikach spowodowała zdecydowany wzrost efektywności procesu odbarwiania roztworów. Biomasa nieimmobilizowana, hodowana w warunkach wstrząsania usunęła zaledwie 5,8%. Wynik dekoloryzacji po 96h w przypadku grzybni immobilizowanej na trocinach osiągnął >56%, a w przypadku siana >80%.
Natural materials that are post-production waste from food industry can be used as solid supports of fungal biomass. The wood rot fungi easily colonize the above-mentioned materials. They are the group of fungi that have a high potential for degradation of various xenobiotics, including synthetic dyes. The aim of this study was to determine the influence of immobilization of Coriolopsis gallica on the effectiveness of decolourisation of anthraquinone RBBR (remazol brilliant blue R). Six different natural materials (hay, sawdust, seeds of cherry and , peach, walnut and peanut shells) were tested for possible usage in the immobilization of biomass of C. gallica. The most intensive growth of the mycelium on a support was obtained only in the case of peanut shells, sawdust and hay. These carriers were characterized by the strongest adsorption of RBBR to the substrate (7-12% within 4 hours). Immobilization of strain on the solid support caused a significant increase in the efficiency of decolourization process. Non-immobilized biomass, grown under conditions of shaking, removed only 5,8%. Results reached after 96h of process when biomass was immobilized on sawdust > 56%, and in the case of hay> 80%.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
139--148
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
autor
- Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Katedra Biotechnologii Środowiskowej, ul. Akademicka 2A, 44-100 Gliwice, tel.: +48 32 2372855
autor
- Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Katedra Biotechnologii Środowiskowej, ul. Akademicka 2A, 44-100 Gliwice, tel.: +48 32 2372855
Bibliografia
- 1. Banat I. M., Nigam P., Singh D., Marchant R. (1996). Microbial decolorization of textile dye containing effluents: a review. Bioresource Technology 58:217–227.
- 2. Asgher M., Shah S.A.H., Ali M., Legge R.L. (2006). Decolorization of some reactive textile dyes by white rot fungi isolated in Pakistan. World j Microbiol Biotechnol. 22:89-93.
- 3. Rodriguez-Couto S. (2009). Dye removal by immobilized fungi. Biotechnology Advances 27:227-235.
- 4. Knapp J.S., Newby P.S., Reece L.P. (1995). Decolorization of wood-rotting basidomycete fungi. Enzyme Microb Technol. (17):664-668.
- 5. Crini G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol. 97:1061–1085.
- 6. Gao J., Zhang Q., Su K., Chen R., Peng Y. (2010a). Biosorption of Acid Yellow 17 from aqueous solution by non-living aerobic granular sludge. J Hazard Mater. 174:215–225.
- 7. Kurniawan A., Kosasih A.N., Febrianto J., Ju Y.-H., Sunarso J., Indraswati N., Ismadji S. (2011). Evaluation of cassava peel waste as lowcost biosorbent for Nisorption: equilibrium, kinetics, thermodynamics and mechanism. Chem Eng J. 172:158–166.
- 8. Slokar Y. M., Le Marechal A.M. (1998). Methods of decoloration of textile wastewaters. Dyes and Pigments 37:335-356.
- 9. Piccin J.S., Vieira M.L.G., Goncalves J.O., Dotto G.L., Pinto L.A.A. (2009). Adsorption of FD&C Red No. 40 by chitosan: isotherms analysis. J Food Eng. 95:16–20.
- 10. Dotto G.L., Pinto L.A.A. (2011). Adsorption of food dyes onto chitosan: optimization process and kinetic, Carbohydr Polym. 187:164–170.
- 11. McKay G., Blair H.S., Gardner J.R. (1982). Adsorption of dyes on Chitin: 1-Equilibrium studies. J Appl Poly Sci 27:3043–57.
- 12. Low K., Lee C., Tan B. (2000). Quarternized wood as sorbent for reactive dyes. Appl Biochem Biotechnol. 87:233–245.
- 13. Nawar S.S., Doma H.S. (1989). Removal of dyes from efluents using low cost agricultural by products. The Sci Tot Environ 79:271-9.
- 14. Sepúlveda L., Fernández K., Contreras E., Palma C. (2004). Adsorption of dyes using peat: equilibrium and kinetic studies. Environ Technol. 25:987–996.
- 15. Ab-El-Thalouth I., Kamel M.M., Haggag K., El-Zawahry M. (1993). Utilizing sugarcane bagasse pulp and carbomoyl ethyl derivatives as direct dye absorbent. Am Dyes Rep. 82:36–41.
- 16. Asfour H.M., Nassar M.M., Fadali D.A., El-Geundi M.S. (1985). Colour removal from textile effluents using hardwood saw dust as an adsorbent. J Chem Tech Biotech. 35A:28–35.
- 17. Garg V.K., Gupta R., Yadav A.B., Kumar R. (2003). Dye removal from aqueous solution by adsorption on treated sawdust. Bioresour Technol. 89:121–124.
- 18. Namasivayam C., Muniasamy N., Gayarti K., Rani M., Ranganathan K. (1996). Removal of dyes from aqueous solutions by cellulosic waste Orange peel. Bioresource Technology 57:37-43.
- 19. Namasivayam C., Kanchana N., Yamuna R.T. (1993). Waste banana pith as adsorbent for removal of rhodamine-B from aqueous solution. Waste Managm. 14:89-95.
- 20. Namasivayam C., Prabha D., Kumutha M. (1997). Removal of dyes by adsorption on to agricultural solid waste. Bioresource Technol. 62:123-7.
- 21. Namasivayam C., Dinesh Kumar M., Selvi K., Begum R.A., Vanathi T., Yamuna R.T. (2001). ‘Waste’ coir pith—a potential biomass for the treatment of dyeing wastewaters. Biomass and Bioenergy 21:477–483.
- 22. Sivaraj R., Namasivayam C., Kadirvelu K. (2001). Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions. Waste Manag. 21(1):105-10.
- 23. Piccin J.S., Gomes C.S., Feris L.A., Gutterres M. (2012). Kinetics and isotherms of leather dye adsorption by tannery solid waste. Chemical Engineering Journal 183:30-38.
- 24. Chabaane L., Tahiri S., Albizane A., Krati M.E., Cervera M.L., de la Guardia M. (2011). Immobilization of vegetable tannins on tannery chrome shavings and their use for the removal of hexavalent chromium from contaminated water. Chem Eng J. 174:310–317.
- 25. Fathima N.N., Aravindhan R., Rao J.R., Nair B.U. (2011). Stabilized protein waste as a source for removal of color from wastewaters. J Appl Polym Sci. 120:1397–1402.
- 26. Azmi W., Sani K.R., Banerjee U.C. (1998). Biodegradation of triphenylmethane dyes. Enzyme Microb Technol. 22:185-191.
- 27. Radha K.V., Regupathi A., Arunagiri A., Murugesan T. (2005). Decolorization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics. Process Biochemistry 40(10):3337-3345.
- 28. Eichlerova I., Homolka L., Nerud F. (2007). Decolorization of high concentrations of synthetic dyesby the white rot fungus Bjercandera adusta strain CCBAS 232. Dyes and Pigments 75:38-44.
- 29. Jarosz-Wilkołazka A., Kochmańska-Rdest J., Malarczyk E., Wardas W., Leonowicz A. (2002).Fungi and their ability to decolourize azo and antraquinonic dyes. Enzyme and MicrobialTechnology 30:566-572.
- 30. Kaushik P., Malik A. (2009). Fungal dye decolourization: recent advances and future potential.Environment Int 35:127-141.
- 31. Khan R., Bhawana P., Fulekar M.H. (2013) Microbial decolorization and degradation of syntheticdyes: a review. Rev Environ Sci Biotechnol 12:75–97. doi 10.1007/s11157-012-9287-6.
- 32. Iqbal M., Saeed A. (2007). Biosorption of reactive dye by loofa sponge – immobilized fungal biomass of Phanerochaete chrysosporium. Process Biochemistry 42:1160-1164.
- 33. Gao D., Du L., Yang J., Wu W., Liang H. (2010b). A critical review of the application of white rot fungus to environmental pollution control. Critical Reviews in Biotechnology 30:70-77.
- 34. Castillo-Carvajal L., Ortega-González K., Barragán-Huerta B.E., Pedroza-Rodríguez A.M. (2012). Evaluation of three immobilization supports and two nutritional conditions for reactive black 5 removal with Trametes versicolor in air bubble reactor. African Journal of Biotechnology 11(14):3310-3320.
- 35. Memon F.N. i Memon S. (2012). Calixarenes: A Versatile Source for the Recovery of Reactive Blue-19 Dye from Industrial Wastewater. Pak J. Anal. Environ. Chem. Vol. 13, No. 2:148-158.
- 36. Palmieri G., Cennamo G., Sannia G. (2005). Remazol Brilliant Blue R decolourization by the fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzyme and Microbial Technology 36:17-24.
- 37. Rezaee A., Ghaneian M. T., Khavanin A., Hashemian S. J., Moussavi Gh., Ghanizadeh Gh., Hajizadeh E. (2008). Photochemical oxidation of reactive blue 19 dye in textile wastewater by UV/K2S2O8 process. Iranian Journal of Environmental Health, Science and Engineering 5(2):95-100.
- 38. Bolarinwa I.F., Orfila C., Morgan M.R.A. (2014). Amygdalin content of seeds, kernels and food products comerially-available in the UK. Food Chemistry 52:133-139.
- 39. Eichlerova I., Homolka Ć.L., Nerud Ć.F. (2006). Evaluation of synthetic dye decolorization capacity in Ischnoderma resinosum. J Ind Microbiol Biotechnol 33:759–766.
- 40. Novotny Č., Svobodova K., Kasinath A., Erbanova P. (2004). Biodegradation of synthetic dyes by Irpex lacteus under various growth conditions. International Biodet. and Biodegr. 54(2-3):215-223.
- 41. Daâssi D., Mechichi T., Nasri M., Rodríguez-Couto S. (2013). Decolorization of the metal textile dye Lanaset Grey G by immobilized white-rot fungi. Find all citations in this journal (default). Journal of Environmental Management 129:324-332.
- 42. Daâssi D., Rodríguez-Couto S., Nasri M., Mechichi T. (2014). Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads. International Biodeterioration & Biodegradation 90: 71-78 doi:10.1016/j.ibiod.2014.02.006.
- 43. Kenkebashvili N., Elisashvili V., Wasser S.P. (2012). Effect of Carbon, nitrogen sources, and copper concentrations on the ligninolytic enzyme production by Coriolopsis gallica. Journal of Waste Conversion, Bioproducts and Biotechnology 1(2):22-27.
- 44. Yagüe S., Terrón M.C., González T., Zapico E., Bocchini P., Galletti G.C., González A.E. (2000). Biotreatment of tannin-rich beer-factory wastewater with white-rot basidiomycete Coriolopsis gallica monitored by pyrolysis/gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 14(10):905-910.
- 45. Siri A.A., Tachibana S., Muryanto. (2012). Correlation of ligninolytic enzymes from a newly found species of Trametes versicolor U97 with RBBR decolorization and DDT degradation. Water Air and Soil Pollution 223:5781-5792.
- 46. Tychanowicz G.K., Zilly A., Marquez de Souza C.G., Peralta R.M. (2004). Decolorization of industrial dyes by solid-state cultures of Pleurotus pulmonaris. Process Biochem 39:855–859.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a03fdac-747b-4777-a27b-81fe0c4abcef