PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of Sea-ice Thermodynamics by a Smoothed Particle Hydrodynamics Method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the problem of sea-ice pack motion and deformation under the action of wind and water drag forces. Differential equations describing the behaviour of ice, with its very distinct material responses in converging and diverging flows, express the mass and linear momentum balances on a horizontal plane (the free surface of the ocean). The thermodynamic effects (ice melting and lead water freezing) are accounted for by adding source terms to the equations describing the evolution of the ice thickness and area fraction (concentration). These thermodynamic source terms are described by means of a single function that idealizes typical ice growth-rates observed in winter in the Arctic. The equations governing the problem are solved by a fully Lagrangian method of the smoothed particle hydrodynamics (SPH). Assuming that the ice behaviour can be approximated by a non-linearly viscous rheology, the proposed SPH model was used to simulate the flow of a sea-ice pack driven by wind drag stresses and varying seasonal temperatures. The results of numerical simulations illustrate the evolution of an ice pack, including distributions of ice thickness and ice area fraction in space and time for assumed temperature distributions.
Rocznik
Strony
277--299
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
  • Institute of Hydro-Engineering, Polish Academy of Sciences, ul. Kościerska 7, 80-328 Gdańsk, Poland
Bibliografia
  • Babko O., Rothrock D. A., Maykut G. A. (2002) Role of rafting in the mechanical redistribution of sea ice thickness, J. Geophys. Res., 107 (C8), 3113, DOI: 10.1029/1999JC000190.
  • Belytschko T., Krongauz Y., Dolbow J., Gerlach C. (1998) On the completeness of meshfree particle methods, Int. J. Numer. Meth. Eng., 43 (5), 785–819, DOI: 10.1002/(SICI)1097-0207(19981115)43:5.
  • Bitz C. M., Lipscomb W. H. (1999) An energy-conserving thermodynamic model for sea ice, J. Geophys. Res., 104 (C7), 15 669–15 677, DOI: 10.1029/1999JC900100.
  • Chadwick P. (1999) Continuum Mechanics: Concise Theory and Problems, Dover, Mineola, New York, 2nd edn.
  • Flato G. M. (1993) A particle-in-cell sea-ice model, Atmos.-Ocean, 31 (3), 339–358.
  • Flato G. M., Hibler W. D. (1992) Modeling pack ice as a cavitating fluid, J. Phys. Oceanogr., 22 (6), 626–651.
  • Gray J. M. N. T., Morland L. W. (1994) A two-dimensional model for the dynamics of sea ice, Phil. Trans. R. Soc. Lond., A 347 (1682), 219–290, DOI: 10.1098/rsta.1994.0045.
  • Gray J. P., Monaghan J. J., Swift R. P. (2001) SPH elastic dynamics, Comput. Meth. Appl. Mech. Eng., 190 (49-50), 6641–6662, DOI: 10.1016/S0045-7825(01)00254-7.
  • Gutfraind R., Savage S. B. (1997a) Marginal ice zone rheology: Comparison of results from continuum-plastic models and discrete-particle simulations, J. Geophys. Res., 102 (C6), 12 647–12 661, DOI: 10.1029/97JC00124.
  • Gutfraind R., Savage S. B. (1997b) Smoothed particle hydrodynamics for the simulation of broken-ice fields: Mohr-Coulomb-type and frictional boundary conditions, J. Comput. Phys., 134 (2), 203–215, DOI: 10.1006/jcph.1997.5681.
  • Gutfraind R., Savage S. B. (1998) Flow of fractured ice through wedge-shaped channels: smoothed particle hydrodynamics and discrete-element simulations, Mech. Mater., 29 (1), 1–17.
  • Hibler W. D. (1979) A dynamic thermodynamic sea ice model, J. Phys. Oceanogr., 9 (4), 815–846.
  • Hunke E. C., Dukowicz J. K. (1997) An elastic-viscous-plastic model for sea ice dynamics, J. Phys. Oceanogr., 27 (9), 1849–1867.
  • Li S., Liu W. K. (2004) Meshfree Particle Methods, Springer, Berlin.
  • Mellor M. (1980) Mechanical properties of polycrystalline ice, [in:] Physics and Mechanics of Ice, Proc. IUTAM Symp. Copenhagen 1979 (ed. P. Tryde), Springer, Berlin, 217–245.
  • Monaghan J. J. (1992) Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30, 543–574, DOI: 10.1146/annurev.aa.30.090192.002551.
  • Monaghan J. J. (2005) Smoothed particle hydrodynamics, Rep. Prog. Phys., 68 (8), 1703–1759, DOI: 10.1088/0034-4885/68/8/R01.
  • Monaghan J. J. (2012) Smoothed particle hydrodynamics and its diverse applications, Annu. Rev. Fluid Mech., 44, 323–346, DOI: 10.1146/annurev-fluid-120710-101220.
  • Morland L. W., Staroszczyk R. (1998) A material coordinate treatment of the sea-ice dynamics equations, Proc. R. Soc. Lond., A 454 (1979), 2819–2857, DOI: 10.1098/rspa.1998.0283.
  • Morris J. P. (1996) Analysis of Smoothed Particle Hydrodynamics with Applications, Ph.D. thesis, Monash University, Melbourne, Australia.
  • Parkinson C. L.,Washington W. M. (1979) A large-scale numerical model of sea-ice, J. Geophys. Res., 84 (C1), 311–337, DOI: 10.1029/JC084iC01p00311.
  • Sanderson T. J. O. (1988) Ice Mechanics. Risks to Offshore Structures, Graham and Trotman, London.
  • Schulkes R. M. S. M., Morland L. W., Staroszczyk R. (1998) A finite-element treatment of sea ice dynamics for different ice rheologies, Int. J. Numer. Anal. Meth. Geomech., 22 (3), 153–174.
  • Smith G. D., Morland L. W. (1981) Viscous relations for the steady creep of polycrystalline ice, Cold Reg. Sci. Technol., 5 (2), 141–150.
  • Staroszczyk R. (2005) Loads exerted by floating ice on a cylindrical structure, Arch. Hydro-Eng. Environ. Mech., 52 (1), 39–58.
  • Staroszczyk R. (2010) Simulation of dam-break flow by a corrected smoothed particle hydrodynamics method, Arch. Hydro-Eng. Environ. Mech., 57 (1), 61–79.
  • Staroszczyk R. (2011) Simulation of solitary wave mechanics by a corrected smoothed particle hydrodynamics method, Arch. Hydro-Eng. Environ. Mech., 58 (1-4), 23–45, DOI: 10.2478/v10203-011-0002-9.
  • Staroszczyk R. (2017) SPH modelling of sea-ice pack dynamics, Arch. Hydro-Eng. Environ. Mech., 64 (2), 115–137, DOI: 10.1515/heem-2017-0008.
  • Thorndike A. S., Rothrock D. A., Maykut G. A., Colony R. (1975) The thickness distribution of sea ice, J. Geophys. Res., 80, 4501–4513, DOI: 10.1029/JC080i033p04501.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a0368a6-9de2-4a3c-a2f0-501fd90a1f32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.