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1. Introduction

In many contemporary structures various types of defects can 
appear leading to significant reduction of the element rigidity and 
changing its overall mechanical behaviour. A special challenge is 
detection and localization of hidden defects, which can have many 
forms depending on the scale of the problem, eg. dislocations, voids 
or inclusions in microscale [43, 49, 44, 3] to macroscopic defects, 
such as delamination in laminated composites [31] or welds in me-
tallic materials [53, 50]. The current work is focused on testing the 
applicability of dynamic vibration-based, as well as the space analysis 
methods to defect detection and localization in 1D (beam) structures. 
The vibration-based methods have been widely used in the plates and 
beams dynamics. For example, Manoach et al. [25, 26, 27, 24, 48] 
analysed the frequencies and modes of free vibrations in order to iden-
tify damage in beam and plates. The most interesting aspect of these 
papers was introduction of the so-called Damage Index exploiting the 
information given by the Poincaré maps [19]. The authors of the cur-
rent study aimed at testing other dynamical methods towards detec-
tion and localization of defects in structures, which led them to reach 
for time series analysis.

Experimental time series, especially nonlinear, can be analyzed 
by means of the method of delay coordinates, which allows to recon-
struct a phase space and Poincaré section. This procedure is precisely 
described in [2, 32] and can be applied for analysis of experimental 
signals obtained from different kinds of real processes [12,  5] and nu-
merical simulations [40]. For instance, the delay coordinate technique 
is used for researching dynamics of robot joints [47] and to analyse 
nonlinear system with dry friction [40]. Interesting contribution in the 
field of phase space reconstruction is presented in [7, 8, 36] in which 
the method of delay coordinates is employed for experimental and 
numerically generated signals, also with noise. Another example can 

be an impact and a self-excited oscillator with CoulombAmontons 
friction [13].

On the basis of delay coordinates method, a recurrence plot tech-
nique is introduced to analyse linear or non-linear stationary and also 
non-stationary time series [30]. The formal concept of recurrences 
was introduced by Henri Poincaré in his seminal work from 1890 
[37], for which he won a prize sponsored by King Oscar II of Sweden 
and Norway [30]. Therein, Poincaré did not only discover the homo-
clinic tangl which lies at the root of the chaotic behaviour of orbits, 
but he also introduced (as a by-product) the concept of recurrences 
in conservative systems. Even though much mathematical work was 
carried out in the following years, Poincaré’s pioneering work and his 
discovery of recurrence had to wait for more than 70 years for the de-
velopment of fast and efficient computers to be exploited numerically. 
The use of powerful computers boosted chaos theory and allowed to 
study new and exciting systems. Some of the tedious computations 
needed to use the concept of recurrence for more practical purposes 
could only be made with this digital tool [30]. In 1987, [5] introduced 
the method of recurrence plots (RPs) to visualize the recurrences of 
dynamical systems. Since that time, scientists have been working in 
various fields have made use of the RPs. Applications of RPs can be 
found in numerous fields of research such as astrophysics [52], earth 
sciences [28], engineering [39, 17, 21, 22, 20, 6, 38], biology [11, 23], 
cardiology, or neuroscience [29, 30, 46, 51], and otolaryngology [41]. 
Damage detection of various mechanical structure is also analyzed 
with the help of the RP [34, 35, 42, 33].

Here, in this paper the applicability of the RPs to identify defect 
in beam structures were tested and compared with the results of dif-
ferent phase space methods; experimental verification of the results 
was performed, as well.
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2. Research methodology

2.1.	 Numerical model and assumptions

In numerical analyses three variants of boundary conditions (BC) 
were considered:

a cantilever beam (Fig.1),•	
a simply-supported beam (Fig.2) and•	
a beam encastered at both ends (Fig.3).•	

3. The methodology of analyzing the beams dynamics 
based on a comparison of the intact and the damaged 
beam for each of the three BC variants. 

The considered numerical beam models prepared in the ABAQUS/
CAE software environment had dimensions equal L × B × H = 800 × 
20 × 5mm. One of the possibilities of modelling damage in a beam is 
changing its local stiffness [10, 14]. Thus, both in the FE analyses and 
in the experimental part of the research a local thinning of the beam 
was introduced. For the purpose of testing the usefulness of the RPs 
method in damage identification process the isotropic aluminum beam 
was tested so far. Nevertheless, the research on the laminated compos-
ite beams is in progress. The accepted material data were as follows: 
mass density ρ=2720kgm−3, Young’s modulus E = 70000GPa and 
Poisson’s coefficient ν=0.33. The BCs for the accepted three beam 
models can formally be written as u(x = 0) = 0, w(x = 0) = 0,  dw/
dx(x = 0) = 0,  u(x = 0) = 0,  w(x = 0) = 0,  w(x = L) = 0 and u(x = 0) 
= 0,  w(x = 0) =0,  dw/dx(x = 0) = 0,  u(x = L) = 0,  w(x = L) = 0,  dw/
dx(x = L) = 0.

In each case of the BC both damaged and intact beam was an-
alyzed. Such an approach allowed to compare the dynamics of the 
damaged beams with their undamaged counterparts. In general, for all 
the models the eigenproblem was solved with the Lanczos algorithm 
in order to get the frequencies of free vibrations and the respective 
modes. In the end the elaborated results were collected and compared 
in order to find the influence of the defect on the dynamical response 
of the analyzed beam structures. The beam models were composed of 
the B21 beam-type elements available in the ABAQUS/CAE standard 
element library [1]. The total number of elements was 40. The defect 
was modeled as a local thinning of the beam cross-section, as justi-
fied above. The weak cross-section had a thickness reduced from the 

nominal 5mm to 3mm. The defect of the length D=80mm starting at 
x=40mm from the clamp occupied 10% of the total beam’s length. 
The results obtained with the ABAQUS/CAE were analyzed with the 
help of different time series analysis and phase space techniques be-
ing a background for testing the recurrence plots (RPs) applicability 
for damage identification. Thus, several scientific approaches were 
applied simultaneously to find any differences in dynamical output 
between the intact and the damaged beam.

3.1.	 Recurrence plots technique

The basic idea of recurrence analysis bases on the delay method 
where any scalar time series may be used to construct a new time 
series vector that is equivalent to the original dynamics from a topo-
logical point of view. The specific vector in a new space (called the 
reconstructed space), is formed according to the Takens’ theory [45] 
and can be presented as follows:

	 si = (xi, xi+d, xi+2d, ..., xi+(m−1)d)	 (1)

where m is called the embedding dimension, d is generally referred as 
the delay (time delay) or lag. This vector is useful only if param-
eters m and d are properly chosen. If the delay d is too long, then 
the coordinates are essentially independent and the proper information 
cannot be gained from the plot. Whereas the delay d is too short, then 
the reconstructed states differ not much and the points are scattered 
around a straight line. The second key embedding parameter m means 
that we are looking for such dimension of reconstructed phase space to 
avoid false crossing of the trajectory. If any two points which stay close 
in the m-dimensional reconstructed space will be still close in the (m + 
1)-dimensional reconstructed space then such a pair of points are called 
true neighbors, otherwise, they are called false neighbors. One of the 
most efficient and popular method to choice the time delay d and embed-
ding dimension m are: the average mutual information (AMI) [9] and the 
false nearest neighbors method (FNN) [18], respectively. In this paper 
AMI and FNN are used as well.

Recurrence Plot (RP) is an advanced technique of nonlinear data 
analysis. RP means a visualization of a square matrix, in which the 
matrix elements correspond to those times at which a state of a dy-
namical system recurs [30]. The recurrence diagram is expressed by 
matrix:

	 Ri,j = H (ε − |xi − xj|)	 (2)

where H is the Heaviside step function, ε is a tolerance parameter 
(threshold),

si and sj are a delay vectors (vectors forming the phase space tra-
jectory in the phase space). If the trajectory in the reconstructed phase 
space returns at time i into the neighbourhood of ε where it was 
j then Mij =1, other- wise Mij =0. These results are plotted as black 
and white dots respectively. Detailed description of embedding param-
eters and much other additional in- formation can be found in [16, 30, 9]. 
A pattern of RP represents dynamical system behaviour. For instance, 
periodic motion is reflected by long and non- interrupted diagonals. The 
vertical distance between these lines corresponds to the period of the 
oscillation. Irregular motion characterizes the pattern consist of differ-
ent lengths lines and distance. Here RP technique is used as a method of 
damage detection in the beams. The embedding parameters: time delay 
(d) and embedding dimension (m) are estimated first before the recur-
rence analysis.

3.2.	 Experimental tests

Experimental verification was performed on the experimental setup 
presented in Fig.4. The test setup consisted of the Polytec PSV 500 

Fig. 1. Cantilever beam model with a defect

Fig. 2. Simple supported beam model with a defect

Fig. 3. Clamped-clamped/encastered beam model with a defect
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3D Laser Scanning Vibrometer possessed by Department of Applied 
Mechanics at Lublin University of Technology.

This sort of vibrometer consists of three in- dependent scan-
ning heads and the data acquisition/visualization unit. Each head is 
equipped with a laser source; one of them has in addition a video 
camera. All the three heads have built-in precise transducers able 
to give dis- placements and velocities of the observed point of the 
scanned object in time. The three laser beams meet at one point with 
a defined precision given in microns, what enables highly accurate 
dynamical measurements, especially around the edges of a specimen. 
During the measurements a frequency of the laser beam, reflected by 
the tested object is compared to the one of the sent beam, according 
to the Doppler effect. Application of the three independent laser scan-
ning heads enables contactless measurements of vibrations of three-
dimensional (3D) objects, particularly those having small dimen-
sions. The measurements are simultaneously performed for the three 
orthogonal spatial directions X, Y and Z. The acquisition/analysis unit 
is equipped with analog-to-digital data conversion cards. Their task 
is to collect the measurement data, what is supervised by a dedicated 
software installed on the PC computer. In addition, the acquisition 
unit is equipped with an excitation signal generation panel. The laser 
scanning vibration measurement allows registration of velocities up 
to 10 m/s in a wide range of frequencies from 0 to 100 kHz. The scan-
ning heads of the PSV500 3D vibrometer enable measurements from 
42 cm counting from the object to hundreds of meters [4].

4. Discussion of numerical and experimental results

The first step of the research was the numerical analysis of dy-
namical behaviour of three beam models differing with boundary con-
ditions (Figs. 1, 2 and 3). Next an experiment was conducted with the 
Laser Scanning Vibrometer.

4.1.	 Cantilever beam

The FEA model of the cantilever beam is presented in Fig. 1. In 
the numerical model the deflection was read at the end point of the 

beam. The FE simulations gave the eigenfrequencies 
collected in Tab.1, where the relative differences of the 
damaged beam’s frequencies with respect to the intact 
one are also presented. In Fig. 5 a direct comparison of 
free vibration frequencies for both cantilever beams is 
presented.

Thus, the reader can see the absolute values of sub-
sequent frequencies; the only slight difference between 
the frequencies obtained for the damaged beam in com-
parison with the healthy one is also well seen. Taking 
into account the frequencies of free vibrations collected 
in Tab.1 the excitation frequency for the cantilever beam 
was chosen to be 2 Hz at the sampling frequency of 0.02 s. 
Such an approach was proposed by Manoach et al. [25, 
26, 27]. The load (pressure) was uniformly distributed 
along the beam. Its value was 1  kPa. The resulting 
displacement time courses of the beams free end were 
plotted in Fig. 6. For better visibility of the differences 

between the damaged and the intact beam a phase plot is shown in 
Fig. 7. Both the time series and the phase plots show only the differ-
ence in vibrations amplitude but the small change in frequency is not 
observable here. Therefore, the recurrence plot for the delay d=3, em-
bedding dimension m=2 and the neighbourhood ε=0.002 were drawn for 
the intact and the damaged beam in Fig.8a and b respectively. The former 
plot obtained for the intact beam (Fig. 8a) pattern characterizes periodic 
motion. The pattern of the damaged beam (Fig. 8b) reflects also regu-
lar vibrations but the amplitude is different from the intact beam output so 

it is important to compare both cases in the same neighbourhood size ε.

4.2.	 Simply supported beam

The simply-supported beam model is presented in Fig. 2. In this 
case, the displacement (deflection) was measured in the middle of the 
beam. The eigenfrequencies obtained numerically are given in Tab. 2 
and graphically presented in Fig. 9. Again, the frequencies for the in-
tact beam are bigger than those for the damaged beam. Concerning the 
obtained eigenfrequencies, the excitation frequency was set to 10 Hz, 
which was in each case less than f 1, in order to evade the resonance, 
as the analysis was by assumption linear. For the same reasons the 
amplitude of the distributed load was set to 10 kPa, what resulted in 
displacement amplitudes very similar to those obtained for the canti-
lever beams end; the beam response was sampled every 0.005s.

Fig. 4. xperimental standing with 3D Laser Doppler Vibrometer

Table 1.	 Eigenfrequencies of the cantilever beam

Eigenfrequency 
order

Eigenfrequency [Hz] Relative differ-
ence [%]intact damaged

f1 6.40 4.43 30.78

f2 40.11 36.43 9.17

f3 112.29 108.26 3.59

f4 219.94 213.44 2.96

f5 363.36 349.42 3.84

Fig. 5.	 Comparison of eigenfrequencies for the cantilever intact and damaged 
beam
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The time course (Fig. 10) and the phase plot (Fig. 11) depict the 
dynamic properties of the simply supported beam. The dynamic be-
havior of the intact and the damaged structure observed by time series 
(Fig. 10) and the phase plot (Fig. 11) were very similar to each other but 
the damaged beam exhibited a bit bigger amplitude of vibrations. The 
difference between them is more evident in recurrence analysis done 
for embedding parameters: d=2, m=2 and ε=0.005.

The recurrence plots (Fig. 12) exhibit regular motion of the intact 
beam while the damaged one manifests a motion with quasi-periodic-
ity that cannot be noticed only through the time series and even the 
phase plot.

4.3.	 Clamped-clamped beam

The third model of beam structure was clamped at both ends 
(Fig. 3). The dimensions of the beam, as well as the size and location 
of the defect was the same as in the previous two models. However, 

Fig. 6	 Displacement time course of intact and damaged cantilever beam 
forced vibrations at 2Hz

Fig. 7. Phase diagram for the cantilever beam excited at 2 Hz

Fig. 9.	 Comparison of eigenfrequencies for the simply supported intact and 
damaged beam

Fig. 8. Recurrence Plot for cantilever intact beam (a) and damaged (b)

Table 2.	 Eigenfrequencies of a simply supported beam

Eigenfrequency 
order

Eigenfrequency [Hz] Relative differ-
ence [%]intact damaged

f1 17.97 17.43 3.03

f2 71.88 65.63 8.70

f3 161.73 143.71 11.14

f4 287.49 259.65 9.68

f5 449.16 416.06 7.37

Fig. 10.	 Displacement time course of intact and damaged simply supported beam 
forced vibrations at 10Hz
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for the accepted boundary conditions the beam was much stiffer, what 
was reflected by its eigenfrequencies collected in Tab.3 and graphi-
cally shown in Fig. 13. Also the expected deflections were smaller. 
For this reason the load amplitude value was chosen to be 1  kPa, 
what provided approximately the same value of deflection amplitude 
(measured in the beam’s mid-point) compared to the two previous mod-
els. The accepted excitation frequency was 20 Hz at 0.005 s sampling. 
Also in this case the damaged beam was less stiff than the intact one 
and therefore it had smaller natural frequencies and bigger vibrations 

Table 3.	 Eigenfrequencies of the clamped-clamped beam

Eigenfrequency 
order

Eigenfrequency [Hz] Relative differ-
ence [%]intact damaged

f1 40.74 36.82 9.61

f2 112.30 108.41 3.46

f3 220.14 213.93 2.82

f4 363.88 350.43 3.70

f5 543.52 522.80 3.81

Fig. 13.	 Comparison of eigenfrequencies for the clamped-clamped intact and 
damaged beam

Fig. 15.	 Phase diagram for the clamped-clamped beam excited at 20Hz

Fig. 16.	 Recurrence Plot for clamped-clamped intact beam (a) and damaged 
(b)

Fig. 14.	 Displacement time course of intact and damaged clamped-clamped 
beam forced vibrations at 20 Hz

Fig. 11. Phase diagram for the simply supported beam excited at 10 Hz

Fig. 12	 Recurrence Plot for simply supported intact beam (a) and damaged 
(b)
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amplitudes, what was reflected by the time series (Fig. 14) and the 
phase plot (Fig. 15).

The difference in eigenfrequencies was very small specially at 
first modes that is why simple frequency analysis was not sufficient 
to detect damages in beams. The recurrence plot technique turned out 
to give better results provided that embedding parameters are selected 
properly. Here, for beams clamped at both ends, the embedding pa-
rameters were as follows: d=5, m=2 ε=5. Then, the recurrence plots 
present various pattern depending on the damage existence (Fig. 16). 
The intact beam (without defect) demonstrates regular RP (Fig. 16a), 
while irregular pattern is typical for the damaged beam (Fig. 16b). 
The damaged beam exhibits symptoms of quasi-periodicity.

4.4.	 Experimental results

The measurements were conducted on a physical aluminum 
beams, both intact and defected. The BCs provided by the experimen-
tal setup in its current form were those given in Fig. 1 – the cantilever 
beam. The results are collected in Tab. 4. Comparison of the results 
with those given in Tab. 1 show their good compatibility. Namely, the 
tendency of subsequent free vibration frequencies for the beam with 
defect to be smaller than its counterpart obtained for the intact struc-
ture was confirmed experimentally. Moreover, the relative differences 
were the biggest for the first mode, both in simulations and in the ex-
periment. This was of course connected with the applied BCs – clamp 
at one end. For the higher frequencies the differences were circulating 
around several percent in both cases. The discrepancies between the 
numerical results and the experimental ones are now under detailed 
consideration. The same applies to the experimental setup towards 
testing the other BCs.

5. Conclusions

Defect detection procedure based on frequency analysis and recur-
rence plot technique is presented here with quite good results. Since 
the difference in eigenfrequencies are relatively small especially for 
lower modes, additional procedure to analyse excited vibrations of 
identified object is important. The recurrence plots analysis gives a 
new aspects of the problem. In case of damaged beams recurrence 
plot pattern is always less regular that let us distinguish intact and 
damaged structure.

The damaged beams have always bigger amplitude of excited 
vibrations and smaller natural frequency. That is caused by smaller 
stiffness of damaged beams comparing to intact beams which do not 
have any detects. Numerical and experimental results are consistent 
in this matter.

The difference in the natural frequencies between the intact and 
damaged beam generally depends on BCs and mode number. Some-
times, it is better to analyse lower modes and sometimes higher ones 
depending on BCs.
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