PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and structure of new modified derivatives based on the quinine molecule and their biological activity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The relevance of the subject matter is conditioned by the constantly growing need to meet human needs in the field of medicine, in particular, the search, study, and further introduction of new types of medicines into practical use. The purpose of this study is to investigate the synthesis of modified quinine alkaloid derivatives, and their structure, to identify the properties and biological activity of antimalarial drugs based on quinine molecules, and to structure the general data of these substances. The leading approach is the analysis of the synthesis of quinine derivatives, their chemical and physical properties, and their ability to exert a medicinal effect. The abstracting method allows structuring alkaloid derivatives and establishing a general relationship between the structural configuration of molecules and their impact on human health in a number of related derivatives. The study identifies the main antimalarial drugs based on quinine molecules, including a comparative analysis of their effectiveness and overall biological activity.
Rocznik
Strony
28--34
Opis fizyczny
Bibliogr. 30 poz., rys., wz.
Twórcy
  • Faculty of Chemistry, Karaganda Buketov University, 100028, 28 Universitetskaya Str., Karaganda, Republic of Kazakhstan
  • Faculty of Chemistry, Karaganda Buketov University, 100028, 28 Universitetskaya Str., Karaganda, Republic of Kazakhstan
  • Department of Biochemistry, Karaganda Medical University, 100008, 40 Gogol Str., Karaganda, Republic of Kazakhstan
Bibliografia
  • 1. Kyle, R. & Shampe, M. (1974). Discoverers of quinine. JAMA. 229(4), article number 462. DOI: 10.1001/jama.229.4.462.
  • 2. Zhu, W., Pryor, S. C., Putnam, J., Cadet, P. & Stefano, G. B. (2004). Opiate alkaloids and nitric oxide production in the nematode Ascaris suum. J. Parasitol. 90(1), 15–22. https://www.jstor.org/stable/3286120.
  • 3. Sobczak-Kupiec, A., Malina, D., Piątkowski, M., Krupa-Zuczek, K., Wzorek, Z. & Tyliszczak, B. (2012). Physicochemical and biological properties of hydrogel/gelatin/hydroxyapatite PAA/G/HAp/AgNPs composites modified with silver nanoparticles. J. Nanosci. Nanotechnol. 12(12), 9302–9311. DOI: 10.1166/jnn.2012.6756.
  • 4. Flückiger, F. A. & Hanbury, D. (1879). Pharmacographia: A history of the principal drugs of vegetable origin, met with in Great Britain and British India. Macmillan and Co., London.
  • 5. Uskov, A. N., Soloviev, A. I., Kravtsov, V. Yu., Gudkov, R. V., Kolomoets, Ye.,V. & Levkovsky, A. Ye. (2018). Molecular genetic mechanisms of Plasmodium Falciparum virulence and pathogenesis of tropical malaria. J. Infectology. 10(3), 23–29. DOI: 10.22625/2072-6732-2018-10-3-23-29.
  • 6. Khusanov, B. & Rikhsieva, B. (2019). Thickness dimensions of the contact layer of soil-rigid body interaction. E3S Web Conf. 97, 1–7. DOI: 10.1051/e3sconf/20199704040.
  • 7. Pozharskiy, A. S., Aubakirova, K. P., Gritsenko, D. A., Tlevlesov, N. I., Karimov, N. Z., Galiakparov, N. N. & Ryabushkina, N.A. (2020). Genotyping and morphometric analysis of Kazakhstani grapevine cultivars versus Asian and European cultivars. Genet. Mol. Res. 19(1), article number gmr18482. DOI: 10.4238/gmr18482.
  • 8. Nurtas, M., Baishemirov, Z., Tsay, V., Tastanov, M. & Zhanabekov, Z. (2020). Applying neural network for predicting cardiovascular disease risk. News Nat. Acad. Sci. Rep. of Kazakhstan-Ser. Phys.-Mathem. 4(332), 28–34. DOI: 10.32014/2020.2518-1726.62.
  • 9. Gritsenko, D., Pozharsky, A., Deryabina, N., Kassenova, A. & Galiakparov, N. (2019). Genetic Analysis of Hemagglutinin Proteins of H3 and H1 Subtypes in Kazakhstan. Genet-Belgrade. 51(2), 511–524. DOI: 10.2298/GENSR1902511G.
  • 10. Baimbetov, A., Bizhanov, K., Yergeshov, K., Bayramov, B., Yakupova, I. & Bozshagulov, T. (2018). One year continuously monitoring follow up results after single procedure atrial fibrillation ablation using cryoballoon second generation. Eur. Heart J. 39, 1225–1225. DOI: 10.1093/eurheartj/ehy566.P5772.
  • 11. Baimbetov, A. K., Abzaliev, K. B., Jukenova, A. M., Bizhanov, K.A., Bairamov, B. A. & Ualiyeva, A. Y. (2022). The efficacy and safety of cryoballoon catheter ablation in patients with paroxysmal atrial fibrillation. Ir. J. Med. Sci. 191(1), 187–193. DOI: 10.1007/s11845-021-02560-z.
  • 12. Ajayi, A. A. (2000). Mechanisms of chloroquine-induced pruritus. Clin. Pharmacol. Ther. 68(3), article numder 336. https://pubmed.ncbi.nlm.nih.gov/11014416/.
  • 13. Tyliszczak, B., Drabczyk, A., Kudłacik-Kramarczyk, S., Bialik-Wąs, K. & Sobczak-Kupiec, A. (2017). In vitro cytotoxicity of hydrogels based on chitosan and modified with gold nanoparticles. J. Polym. Res. 24(10), article number 153. DOI: 10.1007/s10965-017-1315-3.
  • 14. Gumenyuk, S. A. & Baichorova, O. Kh. (2021). Briefly about the SARS-COV-2 coronavirus and its mutations. Available at: https://cemp.msk.ru/info/articles/kratko-o-koronaviruse-sarscov-2-i-ego-mutatsiyakh/.
  • 15. Gautret, P., Lagier, J.-C., Parola, P., Brouqui, P. & Raoult, D. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents. 56(1), article number 105949. DOI: 10.1016/j.ijantimicag.2020.105949.
  • 16. Chen, Z., Hu, J., Zhang, Z., Jiang, S., Han, S., Yan, D., Zhuang, R., Hu, B. & Zhang, Z. (2020). Efficacy of hydroxychloroquine in patients with COVID-19: Results of a randomized clinical trial. DOI: 10.1101/2020.03.22.20040758.
  • 17. Tyliszczak, B., Drabczyk, A. & Kudłacik–Kramarczyk, S. (2018). Smart, self-repair polymers based on acryloyl-6-aminocaproic acid and modified with magnetic nanoparticles – preparation and characterization. Int. J. Polym. Anal. Charact. 23(3), 226–235. DOI: 10.1080/1023666X.2017.1417757.
  • 18. Tyliszczak, B., Kudłacik-Kramarczyk, S., Drabczyk, A., Bogucki, R., Olejnik, E., Kinasiewicz, J. & Głąb, M. (2019). Hydrogels containing caffeine and based on Beetosan® – proecological chitosan – preparation, characterization, and in vitro cytotoxicity. Int. J. Polym. Mater. Polym. Biomater. 68(15), 931–935. DOI: 10.1080/00914037.2018.1525537.
  • 19. Barennes, H., Sterlingot, H., Nagot, N., Bourée, P. & Pussard, E. (2003). Intrarectal pharmacokinetics of two formulations of quinine in children with falciparum malaria. Eur. J. Clin. Pharmacol. 58(10), 649–652. DOI: 10.1007/s00228-002-0546-2.
  • 20. Blinova, K. F., Borisova, N. A. & Gortinsky, G. B. (1990). Botanical-pharmacognostic dictionary. Vysshaya Shkola, Moscow.
  • 21. Woodward, R. & Doering, W. (1944). Complete synthesis of quinine. J. Am. Chem. Soc. 66, 849–850.
  • 22. Collins, M. (2000). Medieval herbals: The illustrative traditions. University of Toronto Press, Toronto.
  • 23. Wexler, P. (2005). Encyclopedia of toxicology. Elsevier, Amsterdam.
  • 24. Yushchuk, N. D. & Vengerov, Yu. Ya. (2009). Infectious diseases: National guidelines. GEOTAR-media, Moscow.
  • 25. Bassetti, M., Vena, A., & Giacobbe, D. R. (2020). The novel Chinese coronavirus (2019-nCoV) infections: Challenges for fighting the storm. Eur. J. Clin. Invest. 50(3), article number e13209. DOI: 10.1111/eci.13209.
  • 26. Baig, A. M., Khaleeq, A., Ali, U. & Syeda, H. (2020). Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 11(7), 995–998. DOI: 10.1021/acschemneuro.0c00122.
  • 27. Melnik, A.A. (2020). New treatment options for COVID-19 infection. Available at: https://www.vitalab.dp.ua/index.php?route=simple_blog/article/view&simple_blog_article_id=15.
  • 28. Lodhi, L., Yadav, J. P., Yamazaki, T., Duong, N. T., Poojary, S. L. & Dey, K. K. (2022). NMR crystallographic approach to study the variation of the dynamics of quinine and its quasienantiomer quinidine. J. Phys. Chem. 126(40), 17291–17305. DOI: 10.1021/acs.jpcc.2c04470.
  • 29. Adam, A. M. A., Saad, H. A., Refat, M. S., Hegab, M. S., Al-Hazmi, G. H., Mohammed, A. A. & Mohamed, H. M. (2022). The derivation and characterization of quinine charge-transfer complexes with inorganic and organic acceptors in liquid and solid form. J. Mol. Liq. 3591, article number 119206. DOI: 10.1016/j.molliq.2022.119206.
  • 30. McNeice, P., Vallana, F. M. F., Coles, S. J., Horton, P. N., Marr, P. C., Seddon, K. R. & Marr, A. C. (2020). Quinine based ionic liquids: A tonic for base instability. J. Mol. Liq. 2971, article number 111773. DOI: 10.1016/j.molliq.2019.111773.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09ff4cac-c44e-4c31-a530-3e06ad702d7d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.