PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Existence results of noninstantaneous impulsive fractional integro-differential equation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Existence of mild solution for noninstantaneous impulsive fractional order integro-differential equations with local and nonlocal conditions in Banach space is established in this paper. Existence results with local and nonlocal conditions are obtained through operator semigroup theory using generalized Banach contraction theorem and Krasnoselskii’s fixed point theorem, respectively. Finally, illustrations are added to validate derived results.
Wydawca
Rocznik
Strony
373--384
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
  • Department of Mathematics, Faculty of Science, The M. S. University of Baroda, Vadodara - 390001, India
  • Department of Mathematics, Faculty of Science, The M. S. University of Baroda, Vadodara - 390001, India
autor
  • Department of Applied Mathematics, Faculty of Technology and Engineering, The M. S. University of Baroda,Vadodara - 390 001, India
Bibliografia
  • [1] I. Podlubny, Fractional Differential Equations, Academic Press, London, 1999.
  • [2] K. S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, 1993.
  • [3] J. H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Engrg. 167(1998), no. 1, 57-68, DOI: https://doi.org/S0045-7825(98)00108-X.
  • [4] A. M. A. El-Sayed, Fractional order wave equation, Internat. J. Theoret. Phys. 35(1996), 311-322, DOI: https://doi.org/10.1007/BF02083817.
  • [5] V. Gafiychuk, B. Datsan, and V. Meleshko, Mathematical modeling of time fractional reaction-diffusion system, J. Comput. Appl. Math. 220(2008), 215-225, DOI: https://doi.org/10.22436/jmcs.08.03.06.
  • [6] R. Metzler and J. Klafter, The restaurant at the end of random walk, the recent developments in description of anomalous transport by fractional dynamics, J. Phys. A 37(2004), 161-208, DOI: https://doi.org/10.1088/0305-4470/37/31/R01.
  • [7] D. Delbosco and L. Rodino, Existence and uniqueness for nonlinear fractional differential equations, J. Math. Anal. Appl. 204(1996), 609-625, DOI: https://doi.org/10.1006/jmaa.1996.0456.
  • [8] J. H. He, Some applications of nonlinear fractional differential equations and their approximations, B. Sci. Technol. 15(1999), 86-90, DOI: https://doi.org/10.4236/am.2013.47A002.
  • [9] B. Bonilla, M. Rivero, L. Rodriguez-Germa, and J. J. Trujillo, Fractional differential equations as alternative models to nonlinear differential equations, Appl. Math. Comput. 187(2007), 79-88, DOI: https://doi.org/10.1016/j.amc.2006.08.105.
  • [10] M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fractals 14(2002), 433-440, DOI: https://doi.org/10.1016/S0960-0779(01)00208-9.
  • [11] Y. Cheng and G. Guozhu, On the solution of nonlinear fractional order differential equations, Nonlinear Anal. 310(2005), 26-29, DOI: https://doi.org/10.1016/j.camwa.2011.03.031.
  • [12] M. M. El-Borai, Semigroups and some nonlinear fractional differential equations, Appl. Math. Comput. 149(2004), 823-831, DOI: https://doi.org/10.1016/S0096-3003(03)00188-7.
  • [13] K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl. 179(1993), 630-637, DOI: https://doi.org/10.1006/JMAA.1993.1373.
  • [14] Y. Zhou and F. Jiao, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal. Real World Appl. 11(2010), 4465-4475, DOI: https://doi.org/10.1016/j.nonrwa.2010.05.029.
  • [15] L. Byszewski, Theorems about the existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162(1991), 494-505, DOI: https://doi.org/10.1016/0022-247X(91)90164-U.
  • [16] K. Balachandran and J. J. Trujillo, The nonlocal Cauchy problem for nonlinear fractional integro-differential equations in Banach spaces, Nonlinear Anal. 72(2010), no. 12, 4587-4593, DOI: https://doi.org/10.1016/j.na.2010.02.035.
  • [17] G. M. N’Guerekata, A Cauchy problem for some fractional abstract differential equations with nonlocal conditions, Nonlinear Anal. 70(2009), 1873-1876, DOI: https://doi.org/10.1016/j.na.2008.02.087.
  • [18] K. Balachandran and J. Y. Park, Nonlinear Cauchy problem for abstract semi-linear evolution equations, Nonlinear Anal. 71(2009), 4471-4475, DOI: https://doi.org/10.1016/j.na.2009.03.005.
  • [19] J. Wang, M. Feckan, and Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ. 8(2011), no. 4, 345-361, DOI: https://doi.org/10.4310/DPDE.2011.v8.n4.a3.
  • [20] F. Li, J. Liang, and H.-K. Xu, Existence of mild solutions for fractional integro-differential equations of Sobolev type with nonlocal conditions, J. Math. Anal. Appl. 391(2012), no. 2, 510-525, DOI: https://doi.org/10.1016/j.jmaa.2012.02.057.
  • [21] V. Laxmikantham, D. Bainov, and P. S. Simeonov, The Theory of Impulsive Differential Equations, Singapore, World Scientific, 1989.
  • [22] K. Dishlieva, Impulsive differential equations and applications, J. Comput. Appl. Math. 1(2012), 1-6, DOI: https://doi.org/10.4172/2168-9679.1000e117.
  • [23] A. Anguraj and M. M. Arjunan, Existence and uniqueness of mild and classical solutions of impulsive evolution equations, Electron. J. Differential Equations 2005(2005), no. 111, 1-8.
  • [24] V. Shah, R. K. George, J. Sharma, and P. Muthukumar, Existence and uniqueness of classical and mild solutions of generalized impulsive evolution equation, Int. J. Nonlinear Sci. Numer. Simul. 19(2018), no. 7-8, 775-780, DOI: https://doi.org/10.1515/ijnsns-2018-0042.
  • [25] M. Benchohra and B. A. Slimani, Existence and uniqueness of solutions to impulsive fractional differential equations, Electron. J. Differ. Equ. 2009(2009), no. 10, 1-11.
  • [26] G. Mophou, Existence and uniqueness of mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum 79(2010), 315-322, DOI: https://doi.org/10.1016/j.mcm.2012.09.001.
  • [27] C. Ravichandran and M. Mallika Arjunan, Existence and uniqueness results for impulsive fractional integro-differential equations in Banach spaces, Int. J. Nonlinear Sci. 11(2011), no. 4, 427-439.
  • [28] K. Balachandran, S. Kiruthika, and J. J. Trujillo, Existence results for fractional impulsive integro-differential equations in Banach spaces, Commun. Nonlinear Sci. Numer. Simul. 16(2011), 1970-1977, DOI: https://doi.org/10.1515/ms-2015-0090.
  • [29] K. Balachandran, S. Kiruthika, and J. J. Trujillo, On fractional impulsive equations of Sobolev type with nonlocal conditio in Banach spaces, Comput. Math. Appl. 62(2011), no. 3, 1157-1165, DOI: https://doi.org/10.1016/j.camwa.2011.03.031.
  • [30] Z. Gao, L. Yang, and G. Liu, Existence and uniqueness of solutions to impulsive fractional integro-differential equations with nonlocal conditions, Appl. Math. 4(2013), no. 6, 859-863, DOI: https://doi.org/10.4236/am.2013.46118.
  • [31] H. R. Kataria and P. H. Patel, Congruency between classical and mild solutions of Caputo fractional impulsive evolution equation on Banach Space, Int. J. Adv. Sci. Tech. 29(2020), no. 3s, 1923-1936.
  • [32] H. Kataria and P. H. Patel, Existence and uniqueness of nonlocal Cauchy problem for fractional differential equations on Banach space, Int. J. Pure Appl. Math. 120(2018), no. 6, 10237-10252.
  • [33] Pei-Luan Li and Chang-Jin Xu, Mild solution of fractional order differential equations with not instantaneous impulses, Open Math. 13(2015), 436-446, DOI: https://doi.org/10.1515/math-2015-0042.
  • [34] A. Meraj and D. N. Pandey, Existence of mild solutions for fractional non-instantaneous impulsive integro-differential equations with nonlocal conditions, Arab J. Math. Sci. 26(2018), no. 1/2, 3-13, DOI: https://doi.org/10.1016/j.ajmsc.2018.11.002.
  • [35] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, North-Holland, 2006.
  • [36] S. G. Samko. A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam 1993.
  • [37] J. Borah and S. Bora, Existence of mild solution of class of nonlocal fractional order differential equation with not instantaneous impulses, Fract. Calc. Appl. Anal. 22(2019), 495-508, DOI: https://doi.org/10.1515/fca-2019-0029.
  • [38] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09f9b2ed-76e6-45a5-a914-244397624bad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.