Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
World widely, efforts of governments and industry focus on the global sustainability. Facing global warming and rapidly growing electricity demand, it is crucial to develop technologies that will allow humanity use planet resources in the most efficient way, which is possible. Energy storage systems are vast and common concepts nowadays, concerning also small residential energy systems with renewable energy sources like photovoltaic installations. This paper describes different solutions for this issue. Characteristics of mentioned methods include basic features and values, advantages and disadvantages, estimated investing (CAPEX) and operating (OPEX) costs for the investors and issues related with environment like efficiency and emissions. As researched in the document, current technologies base on well-known solutions implemented in residential installations but also there is also possibility to develop new methods and combine few of them to use any possible energy surplus, later when it is needed the most. Description of various energy storage system includes both technical and commercial aspects. As most of storage applications differ from each other, choosing proper energy storage system implies economic and environmental benefits. The review has provided sufficient information to conclude that there is no one-size-fits-all solution to store electricity. Suitable solution should be selected based on size of the installation, geographical conditions as well as economic possibilities. For examined energy storage systems there is still necessity of further research and development but overview of those presented in the article, makes it possible to deduce comparison and conclusion.
Czasopismo
Rocznik
Tom
Strony
213--230
Opis fizyczny
Bibliogr. 70 poz., rys.
Twórcy
autor
- Cracow University of Technology, Department of Energy, al. Jana Pawła II 37, 31-864 Kraków, Poland
Bibliografia
- [1] Bouzzine, Y., & Lueg, R. (2021). The Shareholder Value Effect of System Overloads: An Analysis of Investor Responses to the 2003 Blackout in the US. International Journal of Energy Economics and Policy, 11(6). doi: 10.32479/ijeep.11756
- [2] Blaszke, M., Nowak, M., Śleszyński, P., & Mickiewicz, B. (2021). Investments in Renewable Energy Sources in the Concepts of Local Spatial Policy: The Case of Poland. Energies,14(7902). doi: 10.3390/en14237902
- [3] Central Statistical Office. Environment, Energy. https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/ [accessed 17 Jan. 2022].
- [4] Wciślik, S., & Kotrys-Działak, D. (2021). Thermal building upgrade with off-grid PV system: a Polish case. Energy Efficiency, 14, 70. doi: 10.1007/s12053-021-09980-x
- [5] Gnatowska, R., & Moryń-Kucharczyk, E. (2021). The place of photovoltaics in Poland’s energy mix. Energies, 14(5), 1471. doi:10.3390/en14051471
- [6] Jurasz, J. (2016). The impact of temperature variability on the demand for electric power in Poland in 2002−2015. Przegląd Elektrotechniczny, 1(9), 259–263. doi: 10.15199/48.2016.09.62 (in Polish).
- [7] Jurasz, J., Krzywda, M., & Mikulik, J. (2016). How might residential PV change the energy demand curve in Poland. E3S Web of Conferences, 10, 00059. doi: 10.1051/e3sconf/20161000059
- [8] Hittinger, E., & Ciez, R.E. (2020). Modeling costs and benefits of energy storage systems. Annual Review of Environment and Resources, 45(1), 445–469. doi: 10.1146/annurev-environ012320-082101
- [9] Zakeri, B., Cross, S., Dodds, P.E., & Gissey, G.C. (2021). Policy options for enhancing economic profitability of residential solar photovoltaic with battery energy storage. Applied Energy, 290,116697. doi: 10.1016/j.apenergy.2021.116697
- [10] PV Magazine International. Germany has 200 000 solar-plusstorage systems. https://www.pv-magazine.com/2020/04/21/germany-has-200000-solar-plus-storage-systems/ [accessed 18 Jan. 2022].
- [11] Jarosiński, M., Godlewski, W., & Sierakowski, M. (2021). Cost effectiveness of PV installations with battery energy storage and proposed changes in prosumer settlement. Installation Market,9/2021 (in Polish).
- [12] Popp, H., Attia, J., Delcorso, F., & Trifonova, A. (2014). Lifetime analysis of four different lithium ion batteries for (plug – in) electric vehicle. Conference: TRA2014 Transport Research Arena, 14−17 April 2014, Paris, France.
- [13] Khalid, A., Stevenson, A., & Sarwat, A.I. (2021). Overview of technical specifications for grid-connected microgrid battery energy storage systems. IEEE Access: Practical Innovations, Open Solutions, 9, 163554–163593. doi: 10.1109/access.2021.3132223
- [14] Wang, T., Zhao, Y., & Chen, J. (2018). A battery monitoring IC with an isolated communication interface for electric vehicles. IEICE Electronics Express, 15(12), 20180513–20180513. doi:10.1587/elex.15.20180513
- [15] Salkuti, S.R. (2020). Comparative analysis of electrochemical energy storage technologies for smart grid. ELKOMNIKA (Telecommunication Computing Electronics and Control), 18.doi: 10.12928/telkomnika.v18i4.14039
- [16] Simpson, A.G. (2024). Parametric modelling of energy consumption in road vehicles. University of Queensland Library.
- [17] Dixon, J., Nakashima, I., Arcos, E.F., & Ortuzar, M. (2010). Electric vehicle using a combination of ultracapacitors and ZEBRA battery. IEEE Transactions on Industrial Electronics (1982), 57(3), 943–949. doi: 10.1109/tie.2009.2027920
- [18] Xie, P., Sun, F., Wang, L., & Liu, P. (2019). A review on China’s Energy Storage Industry under the “Internet Plus” initiative. International Journal of Energy Research, 43(2), 717–741. doi:10.1002/er.4234
- [19] Yuqing, Y., Bremner, S., Menictas, C., & Kay, M. (2018). Battery energy storage system size determination in renewable energy systems: A review. Renewable and Sustainable Energy Reviews, 91(8), 109-125. doi: 10.1016/j.rser.2018.03.047
- [20] Jingmei, S., Fang, D., Hong, Z., & Mei, C. (2015). Introduction to Electrochemical Energy Storage and Conversion. In book: Electrochemical Energy: Advanced Materials and Technologies, Chapter 1. CRC Press. doi: 10.1201/9781351228756
- [21] Boparai, K., & Singh, R. (2018). Electrochemical Energy Storage Using Batteries, Superconductors and Hybrid Technologies. In book K. Boparai, & R. Singh, Reference Module in Materials Science and Materials Engineering. doi: 10.1016/B978-0-12-803581-8.11277-9
- [22] Bloomberg New Energy Finance. (2019). A Behind the Scenes Take on Lithium-ion Battery Prices. https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices/ [accessed 17 Jan.2022].
- [23] Figgener, J., Stenzel, P., Kairies, K.P., Linßen, J., Haberschusz, D., Wessels, O., Robinius, M., Stolten, D., & Sauer, D.U. (2021). The development of stationary battery storage systems in Germany – status 2020. Journal of Energy Storage, 33, 101982.doi: 10.1016/j.est.2020.101982
- [24] Stecca, M., Ramirez Elizondo, L., Batista Soeiro, T., Bauer, P., & Palensky, P. (2020). A comprehensive review of the integration of battery energy storage systems into distribution networks. IEEE Open Journal of the Industrial Electronics Society, 1, 46–65. doi: 10.1109/ojies.2020.2981832
- [25] Lebrouhi, B.E., Djoupo, J.J., Lamrani, B., Benabdelaziz, K., & Kousksou, T. (2022). Global hydrogen development - A technological and geopolitical overview. International Journal of Hydrogen Energy, 47(11), 7016–7048. doi: 10.1016/j.ijhydene.2021.12.076
- [26] Li, H., Ma, C., Zou, X., Li, A., Huang, Z., & Zhu, L. (2021). Onboard methanol catalytic reforming for hydrogen Production: A review. International Journal of Hydrogen Energy, 46(43),22303–22327. doi: 10.1016/j.ijhydene.2021.04.062
- [27] Sdanghi, G., Maranzana, G., Celzard, A., & Fierro, V. (2019). Review of the current technologies and performances of hydrogen compression for stationary and automotive applications. Renewable and Sustainable Energy Reviews, 102,150–170. doi: 10.1016/j.rser.2018.11.028
- [28] Chouhan, K., Sinha, S., Kumar, S., & Kumar, S. (2021). Simulation of steam reforming of biogas in an industrial reformer for hydrogen production. International Journal of Hydrogen Energy, 46(53), 26809–26824. doi: 10.1016/j.ijhydene.2021.05.152
- [29] Sanchez, N., Ruiz, R., Hacker, V., & Cobo, M. (2020). Impact of bioethanol impurities on steam reforming for hydrogen production: A review. International Journal of Hydrogen Energy, 45(21), 11923–11942. doi: 10.1016/j.ijhydene.2020.02.159
- [30] Ma, Y., Wang, X. R., Li, T., Zhang, J., Gao, J., & Sun, Z.Y. (2021). Hydrogen and ethanol: Production, storage, and transportation. International Journal of Hydrogen Energy, 46(54), 27330–27348. doi: 10.1016/j.ijhydene.2021.06.027
- [31] Scamman, D., & Newborough, M. (2016). Using surplus nuclear power for hydrogen mobility and power-to-gas in France. International Journal of Hydrogen Energy, 41(24), 10080–10089. doi: 10.1016/j.ijhydene.2016.04.166
- [32] Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36(3), 307−326. doi:10.1016/j.pecs.2009.11.002
- [33] Khalid, F., & Bicer, Y. (2020). High temperature electrolysis of hydrogen bromide gas for hydrogen production using solid oxide membrane electrolyzer. International Journal of Hydrogen Energy, 45(9), 5629–5635. doi: 10.1016/j.ijhydene.2019.01.293
- [34] Yoon, S., Ahmed, F., Zhang, W., Ryu, T., Jin, L., Kim, D., Kim, W., & Jang, H. (2020). Flexible blend polymer electrolyte membranes with excellent conductivity for fuel cells. International Journal of Hydrogen Energy, 45(51), 27611–27621. doi: 10.1016/j.ijhydene.2020.07.076
- [35] Węcel, D., & Ogulewicz, W. (2011). Study on the possibility of use of photovoltaic cells for the supply of electrolysers. Archives of Thermodynamics, 32(4), 33–53. doi: 10.2478/v10173-011-0030-4
- [36] Gago, A., Bürkle, J., Lettenmeier, P., Morawietz, T., Handl, M., Hiesgen, R., Burggraf F., Beltran P., Friedrich K.A.(2018). Degradation of Proton Exchange Membrane (PEM) Electrolysis: The Influence of Current Density. ECS Transactions, 86 (13).doi: 10.1149/08613.0695ecst
- [37] Zivar, D., Kumar, S., & Foroozesh, J. (2021). Underground hydrogen storage: A comprehensive review. International Journal of Hydrogen Energy, 46(45), 23436–23462. doi:10.1016/j.ijhydene.2020.08.138
- [38] Wolf, E. (2015). Large-Scale Hydrogen Energy Storage. In Electrochemical Energy Storage for Renewable Sources and Grid Balancing (pp. 129142). Elsevier doi: 10.1016/B978-0-444-62616-5.00009-7
- [39] Olabi, A.G., Bahri, A.S., Abdelghafar, A.A., Baroutaji, A., Sayed, E.T., Alami, A.H., Rezk, H., & Abdelkareem, M.A. (2021). Large-vscale hydrogen production and storage technologies: Current status and future directions. International Journal of Hydrogen Energy, 46(45), 23498–23528. doi:10.1016/j.ijhydene.2020.10.110
- [40] Hassan, I.A., Ramadan, H.S., Saleh, M.A., & Hissel, D. (2021). Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives. Renewable and Sustainable Energy Reviews, 149, 111311. doi: 10.1016/j.rser.2021.111311
- [41] Zheng, J., Zhou, H., Wang, C.G., Ye, E., Xu, J. W., Loh, X.J., & Li, Z. (2021). Current research progress and perspectives on liquid hydrogen rich molecules in sustainable hydrogen storage. Energy Storage Materials, 35, 695–722. doi: 10.1016/j.ensm.2020.12.007
- [42] Andersson, J., & Grönkvist, S. (2019). Large-scale storage of hydrogen. International Journal of Hydrogen Energy, 44(23),11901–11919. doi: 10.1016/j.ijhydene.2019.03.063
- [43] Chi, J., & Yu, H. (2018). Water electrolysis based on renewable energy for hydrogen production. Cuihua Xuebao/Chinese Journal of Catalysis, 39(3), 390–394. doi: 10.1016/s1872-2067(17)62949-8
- [44] Acar, C., & Dincer, I. (2014). Comparative assessment of hydrogen production methods from renewable and nonrenewable sources. International Journal of Hydrogen Energy, 39(1), 1–12. doi: 10.1016/j.ijhydene.2013.10.060
- [45] Lee, B., Heo, J., Kim, S., Sung, C., Moon, C., Moon, S., & Lim, H. (2018). Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations. Energy Conversion and Management, 162, 139–144. doi: 10.1016/j.enconman.2018.02.041
- [46] Sun, Y., Shen, C., Lai, Q., Liu, W., Wang, D.W., & Aguey-Zinsou, K.F. (2018). Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art. Energy Storage Materials, 10, 168–198. doi: 10.1016/j.ensm.2017.01.010
- [47] Pinsky, R., Sabharwall, P., Hartvigsen, J., & O’Brien, J. (2020). Comparative review of hydrogen production technologies for nuclear hybrid energy systems. Progress in Nuclear Energy, 123(103317), 103317. doi: 10.1016/j.pnucene.2020.103317
- [48] Shiva Kumar, S., & Lim, H. (2022). An overview of water electrolysis technologies for green hydrogen production. Energy Reports, 8, 13793–13813. doi: 10.1016/j.egyr.2022.10.127
- [49] Balat, M. (2008). Possible methods for hydrogen production. Energy Sources Part A Recovery Utilization and Environmental Effects, 31(1), 39–50. doi: 10.1080/15567030701468068
- [50] Rashid, M., Al Mesfer, M., Naseem, H., & Danish, M. (2015). Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. International Journal of Engineering and Advanced Technology. 4(3), 80-93.
- [51] Ursua, A., Gandia, L.M., & Sanchis, P. (2012). Hydrogen production from water electrolysis: Current status and future trends. Proceedings of the Institute of Electrical and Electronics Engineers, 100(2), 410–426. doi: 10.1109/jproc. 2011.2156750
- [52] Anwar, S., Khan, F., Zhang, Y., & Djire, A. (2021). Recent development in electrocatalysts for hydrogen production through water electrolysis. International Journal of Hydrogen Energy, 46(63), 32284–32317. doi: 10.1016/j.ijhydene.2021.06.191
- [53] Cheng, J., Zhang, H., Chen, G., & Zhang, Y. (2009). Study of IrxRu1−xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis. Electrochimica Acta, 54(26),6250–6256. doi: 10.1016/j.electacta.2009.05.090
- [54] Grove, W.R. (1838). On a new voltaic combination: To the editors of the Philosophical Magazine and Journal. The London and Edinburgh Philosophical Magazine and Journal of Science, 13(84), 430–431. doi: 10.1080/14786443808649618
- [55] Thomas, J.M. (2012). W.R. Grove and the fuel cell. Philosophical Magazine, 92(31), 3757–3765. doi: 10.1080/14786435.2012.691216
- [56] Mond, L., & Langer, C. (1890). A new Form of Gas Battery, Proceedings of the Royal Society of London, 52(46), 296-304.
- [57] Jannelli, E., Minutillo, M., & Galloni, E. (2007). Performance of a polymer electrolyte membrane fuel cell system fueled with hydrogen generated by a fuel processor. Journal of Fuel Cell Science and Technology, 4(4), 435–440. doi: 10.1115/1.2756568
- [58] Luo, Y., Shi, Y., & Cai, N. (2021). Bridging a bi-directional connection between electricity and fuels in hybrid multi-energy systems. In Hybrid Systems and Multi-energy Networks for the Future Energy Internet (pp. 41–84). Elsevier.
- [59] Sharaf, O.Z., & Orhan, M.F. (2014). An overview of fuel cell technology: Fundamentals and applications. Renewable and Sustainable Energy Reviews, 32, 810–853. doi: 10.1016/j.rser.2014.01.012
- [60] Magar, Y.N. (2006). Convective Cooling and Thermal Management Optimization of Planar Anode-Supported Solid Oxide Fuel Cells. M.S. Thesis. University of Cincinnati.
- [61] Polat, C., & Kilinc-Ata, N. (2008). Market Opportunities for Hydrogen Solid Oxide Fuel Cells (SOFC): A Review of the Literature and the Future Market Trends. Business & Economics Conferences (EABR) and Teaching & Education Conferences (TLC). 23−26 June 2008, Salzburg, Austria.
- [62] Vang, J.R., Andreasen, S.J., & Kær, S.K. (2012). A transient fuel cell model to simulate HTPEM fuel cell impedance spectra. Journal of Fuel Cell Science and Technology, 9(2). doi:10.1115/1.4005609
- [63] Breeze, P. (2017). An introduction to fuel cells. In Fuel Cells (pp.1–10). Elsevier. doi: 10.1016/B978-0-08-101039-6.00001-7
- [64] Baik, K.D., & Yang, S.H. (2020). Improving open-cathode polymer electrolyte membrane fuel cell performance using multi-hole separators. International Journal of Hydrogen Energy, 45(15), 9004–9009. doi: 10.1016/j.ijhydene.2020.01.040
- [65] Wong, C.Y., Wong, W.Y., Ramya, K., Khalid, M., Loh, K.S., Daud, W.R. W., Lim, K.L., Walvekar, R., & Kadhum, A.A.H. (2019). Additives in proton exchange membranes for low- and high-temperature fuel cell applications: A review. International Journal of Hydrogen Energy, 44(12), 6116–6135. doi: 10.1016/j.ijhydene.2019.01.084
- [66] Tu, B., Qi, H., Yin, Y., Zhang, T., Liu, D., Han, S., Zhang, F., Su, X., Cui, D., & Cheng, M. (2021). Effects of methane processing strategy on fuel composition, electrical and thermal efficiency of solid oxide fuel cell. International Journal of Hydrogen Energy, 46(52), 26537–26549. doi: 10.1016/j.ijhydene.2021.05.128
- [67] Gaines, L.L., Elgowainy, A., & Wang, M.Q. (2008). Full fuel-cycle comparison of forklift propulsion systems. Office of Scientific and Technical Information (OSTI), ID 946421. doi:10.2172/946421
- [68] Al Rafea, K., Elsholkami, M., Elkamel, A., & Fowler, M. (2017). Integration of decentralized energy systems with utility-scale energy storage through underground hydrogen–natural gas costorage using the energy hub approach. Industrial and Engineering Chemistry Research, 56(8), 2310–2330. doi:10.1021/acs.iecr.6b02861
- [69] Bartela, Ł. (2020). A hybrid energy storage system using compressed air and hydrogen as the energy carrier. Energy, 196,117088. doi: 10.1016/j.energy.2020.117088
- [70] Bartela, Ł., Chmielniak, T., & Kotowicz, J. (2018). A way of integration of energy storage systems using in hydrogen and compressed air. Patent No. PL 235565 B1, Poland (in Polish).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09e977d6-99ef-4449-8891-6f7e5d2062b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.