PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and Simulation Research of the Gripper Manipulator

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the boundary problem of instability of single slender system with consideration of Timoshenko theory is presented. The investigated structure is loaded by Euler’s force (the most common type of loading); additionally the different boundary conditions are taken into account. Simulated type of external load is characterized by constant line of action regardless to deflection of the system. In order to achieve more general form of the investigated system the springs limiting the rotations and displacement of both ends are used. Boundary problem is formulated on the basis of the minimum total potential energy. The results of numerical simulations obtained with Timoshenko and Bernoulli-Euler theories are compared. The simulations are done at different magnitudes of slenderness factor as well as translational and rotational springs stiffness. On the basis of the obtained results the difference in critical forces calculated on the basis of both theories can be easily presented.
Rocznik
Strony
5--14
Opis fizyczny
Bibliogr. 13 poz., wykr.
Twórcy
autor
  • Częstochowa University of Technology, Institute of Mechanics and Machine Design Foundations
autor
  • Częstochowa University of Technology, Institute of Mechanics and Machine Design Foundations
Bibliografia
  • 1. Abramovich, H. (1992). Natural frequencies of Timoshenko beams under compressive axial loads. Journal of Sound and Vibration, 157(1):183–189.
  • 2. Beck, Max (1952). Die knicklast des einseitig eingespannten, tangential gedrückten stabes. Zeitschrift für angewandte Mathematik und Physik (ZAMP), 3(3):225–228.
  • 3. Kargarnovin, Mohammad H. and Jafari-Talookolaei, Ramazan A. (2010). Application of the homotopy method for the analytic approach of the nonlinear free vibration analysis of the simple end beams using four engineering theories. Acta Mechanica, 212(3-4):199–213.
  • 4. Katsikadelis, J.T. and Kounadis, AN. (1983). Flutter loads of a Timoshenko beam column under a follower force governed by two variants of equations of motion. Acta Mechanica, 48(3):209–217.
  • 5. Kounadis, A.N. and Katsikadelis, J.T. (1976). Shear and rotary inertia effect on Beck’s columns. Journal of Sound and Vibration, 49(2):171–178.
  • 6. Sundararajan, C. (1976). Influence of an elastic and support on the vibration and stability of Beck’s column. International Journal of Mechanical Sciences, 18(5):239–241.
  • 7. Szmidla, J. (2007). Vibrations and stability of t-type frame loaded by longitudinal force in relation to its bolt. Thin-Walled Structures, 45(10):931–935.
  • 8. Tomski, Lech and Szmidla, Janusz (2003). Local and global instability and vibration of overbraced Euler’s column. Journal of Theoretical and Applied Mechanics, 41(1):137–154.
  • 9. Tomski, L. and Uzny, S. (2008a). Free vibrations and the stability of a geometrically non-linear column loaded by a follower force directed towards the positive pole. International Journal of Solids and Structures, 45(1):87–112.
  • 10. Tomski, L. and Uzny, S. (2008b). Vibration and stability of geometrically nonlinear column subjected to generalized load with a force directed toward the positive pole. International Journal of Structural Stability and Dynamics, 8(01):1–24.
  • 11. Tomski, L. and Uzny, S. (2011). The regions of flutter and divergence instability of a column subjected to beck’s generalized load, taking into account the torsional flexibility of the loaded end of the column. Mechanics Research Communications, 38(2):95–100.
  • 12. Uzny, S. (2011). Local and global instability and vibrations of a slender system consisting of two coaxial elements. Thin-Walled Structures, 49(5):618–626.
  • 13. Ziegler, Hans (1968). Principles of structural stability. Waltham.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09e669e4-c2cd-45da-b6c9-ac1ef2564fba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.