PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Numerical and experimental analysis of welds in steel structural element

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza numeryczna i eksperymentalna spoin w stalowym elemencie konstrukcyjnym
Języki publikacji
EN
Abstrakty
EN
The paper is focused on the numerical models of steel welded supporting elements and their verification using experiment. Currently, for the stress-strain analysis of the elements in supporting structures it is possible to use many commercial software systems, based on the finite element method - FEM. It is important to check and compare the results of FEM analysis with the results of physical verification test, in which the real behavior of the bearing element can be observed. The results of the comparison can be used for calibration of the computational model. The article deals with the physical tests of steel supporting elements, whose main purpose is obtaining the material, geometry and strength characteristics of the fillet and butt welds. Three types of specimens were designed to investigate the state of stress in fillet of butt welds. Specimens were designed to reflect the fact that the stiffness of connected elements has to be higher than the stiffness of the welded joints. It can therefore be assumed that the stress-strain diagram will reflect the behavior of strains and stresses in welds. During the experiments it was monitored the displacement and the resulting force carried into the specimens.
PL
Artykuł koncentruje się na modelach numerycznych stalowych spawanych elementów nośnych i ich weryfikacji za pomocą badań eksperymentalnych. Obecnie do analizy naprężeń i odkształceń elementów w konstrukcjach nośnych można wykorzystać wiele komercyjnych systemów oprogramowania, opartych na metodzie elementów skończonych (MES). Ważne jest, aby sprawdzić i porównać wyniki analizy MES z wynikami badań eksperymentalnych, w których można zaobserwować rzeczywiste zachowanie elementu konstrukcyjnego. Wyniki porównania można wykorzystać do kalibracji modelu obliczeniowego. W artykule omówiono badania laboratoryjne stalowych elementów nośnych, których głównym celem było uzyskanie informacji na temat materiału, geometrii i charakterystyki wytrzymałościowej spoin pachwinowych i czołowych. Zaprojektowano trzy rodzaje próbek w celu zbadania stanu naprężeń w spoinach czołowych. Próbki zostały zaprojektowane tak, aby odzwierciedlały fakt, że sztywność połączonych elementów musi być większa niż sztywność połączeń spawanych. Można zatem założyć, że wykres naprężenie-odkształcenie odzwierciedla zachowanie odkształceń i naprężeń w spoinach. Podczas eksperymentów monitorowano przemieszczenie i wynikową siłę przenoszoną przez próbki.
Rocznik
Strony
219--230
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • VŠB - Technical University of Ostrava, Faculty of Civil Engineering, Czech Republic
autor
  • VŠB - Technical University of Ostrava, Faculty of Civil Engineering, Czech Republic
  • VŠB - Technical University of Ostrava, Faculty of Civil Engineering, Czech Republic
autor
  • VŠB - Technical University of Ostrava, Faculty of Civil Engineering, Czech Republic
autor
  • VŠB - Technical University of Ostrava, Faculty of Civil Engineering, Czech Republic
Bibliografia
  • [1] Holicky M., Markova J., Sykora M., Target reliability levels in present standards, Transactions of the VSB - Technical University of Ostrava, Civil Engineering Series 2014, 14(2), 46-53. DOI: 10.2478/tvsb-2014-0018.
  • [2] Hofmeyer H., Rosmanit M., Bakker M.C.M., Prediction of sheeting failure by an ultimate failure model using the fictitious strain method, Thin-Walled Structures 2009, 47(2), 151-162. DOI: 10.1016/j.tws.2008.06.005.
  • [3] Kormanikova E., Kotrasova K., Sizing optimization of sandwich plate with laminate faces, International Journal of Mathematics and Computers in Simulation 2016, 10, 273-280.
  • [4] Kotrasova K., Sloshing of liquid in rectangular tank, Advanced Materials Research 2014, 969, 320-323. DOI: 10.4028/www.scientific.net/AMR.969.320.
  • [5] Kralik J., Safety of nuclear power plants against the aircraft attack, Applied Mechanics and Materials 2014, 617, 76-80. DOI: 10.4028/www.scientific.net/AMM.617.76.
  • [6] Krejsa M., Kala Z., Seitl S., Inspection based probabilistic modeling of fatigue crack progression, Procedia Engineering 2016, 142, 145-152. DOI: 10.1016/j.proeng.2016.02.025.
  • [7] Labudkova J., Cajka R., Comparison of measured displacement of the plate in interaction with the subsoil and the results of 3D numerical model, Advanced Materials Research 2014, 1020, 204-209. DOI: 10.4028/www.scientific.net/AMR.1020.204.
  • [8] Marschalko M., Yilmaz I., Kubecka K., Bouchal T., Bednarik M., Drusa M., Bendova M., Utilization of ground subsidence caused by underground mining to produce a map of possible land-use areas for urban planning purposes, Arabian Journal of Geosciences 2014, 1-10. DOI: 10.1007/s12517-013-1250-5.
  • [9] Vican J., Gocal J., Odrobinak J., Moravcik M., Kotes P., Determination of railway bridges loading capacity, Procedia Engineering 2015, 111, 839-844. DOI: 10.1016/j.proeng.2015.07.155.
  • [10] Flodr J., Krejsa M., Mikolasek D., Brozovsky J., Parenica P., Numerical modeling of a thin walled profile with respect to the redistribution of bending moments, [In:] J. Kruis, Y. Tsompanakis, B.H.V. Topping (Eds.), Proceedings of the Fifteenth International Conference on Civil, Structural and Environmental Engineering Computing, Civil-Comp Proceedings, Vol. 108, Civil-Comp Press, Stirlingshire, 2015, 1-15. DOI: 10.4203/ccp.108.37.
  • [11] Ilcik J., Arora V., Dolejs J., Design of new scaffold anchor based on the updated finite element model, Engineering Structures 2016, 118, 334-343. DOI: 10.1016/j.engstruct.2016.03.064.
  • [12] Jendzelovsky N., Balaz L., Numerical modeling of cylindrical tank and compare with experiment, Applied Mechanics and Materials 2014, 617, 148-151. DOI: 10.4028/www.scientific.net/ AMM.617.148.
  • [13] Melcer J., Lajcakova G., Comparison of finite element and classical computing models of reinforcement pavement, Advanced Materials Research 2014, 969, 85-88. DOI: 10.4028/www.scien tific.net/AMR.969.85.
  • [14] Salajka V., Hradil P., Kala J., Assess of the nuclear power plant structures residual life and earthquake resistance, Applied Mechanics and Materials 2013, 284-287, 1247-1250. DOI: 10.4028/www.scientific.net/AMM.284-287.1247.
  • [15] Lokaj A., Klajmonova K., Round timber bolted joints exposed to static and dynamic loading, Wood Research 2014, 59(3), 439-448.
  • [16] Urban V., Krivy V., Fabian L., Experimental testing of the weathering steel road bridge in Ostrava, Advanced Materials Research 2014, 849, 228-233. DOI: 10.4028/www.scientific.net/AMR.849.228.
  • [17] Kmet S., Stanova E., Fedorko G., Fabian M., Brodniansky J., Experimental investigation and finite element analysis of a four-layered spiral strand bent over a curved support, Engineering Structures 2013, 57, 475-483. DOI: 10.1016/j.engstruct.2013.09.019.
  • [18] Major I., Major M., Modeling of wave propagation in the ADINA software for simple elastic structures, Advanced Materials Research 2014, 1020, 171-176. DOI: 10.4028/www.scientific.net /AMR.1020.171.
  • [19] Strauss A., Kala Z., Bergmeister K., Hoffmann S., Novak D., The object of this contribution is the comparison of the statistical characteristics of yield strength, ultimate strength and ductility of Austrian and Czech steels, Stahlbau 2006, 75(1), 55-60. DOI: 10.1002/stab.200610007.
  • [20] Hobbacher A., Stress intensity factors of welded joints, Engineering Fracture Mechanics 1993, 46(2), 173-182. DOI: 10.1016/0013-7944(93)90278-Z.
  • [21] Lazzarin P., Tovo R., A notch intensity factor approach to the stress analysis of welds, Fatigue & Fracture of Engineering Materials & Structures 1998, 21(9), 1089-1103. DOI: 10.1046/j.1460-2695.1998.00097.x.
  • [22] Dawei X., An exact solution on the stress analysis of fillet welds, Applied Mathematics and Mechanics 1995, 16(11), 1019-1024.
  • [23] Meneghetti G., Guzzella C., The peak stress method to estimate the mode I notch stress intensity factor in welded joints using three-dimensional finite element models, Engineering Fracture Mechanics 2014, 115, 154-171. DOI: 10.1016/j.engfracmech.2013.11.002.
  • [24] Kanvindea A.M., Gomeza I.R., Robertsa M., Fella B.V., Grondinb G.Y., Strength and ductility of fillet welds with transverse root notch, Journal of Constructional Steel Research 2009, 65(4), 948-958. DOI: 10.1016/j.jcsr.2008.05.001.
  • [25] Chung H.Y., Liu S.H., Lin R.S., Ju S.H., Assessment of stress intensity factors for load-carrying fillet welded cruciform joints using a digital camera, International Journal of Fatigue 2008, 30(10-11), 1861-1872. DOI: 10.1016/j.ijfatigue.2008.01.017.
  • [26] Daunys M., Dundulis R., Kilikevicius S., Cesnavicius R., Analytical investigation and numerical simulation of the stress-strain state in mechanically heterogeneous welded joints with a single-Vbutt weld, Engineering Failure Analysis 2016, 62, 232-241. DOI: 10.1016/j.engfailanal.2016. 01.016.
  • [27] Krejsa M., Brozovsky J., Mikolasek D., Parenica P., Zidek L., Kozak J., An experimental testing of fillet welded specimens, Applied Mechanics and Materials 2015, 752-753, 412-417. DOI: 10.4028/www.scientific.net/AMM.752-753.412.
  • [28] Krejsa M., Brozovsky J., Mikolasek D., Parenica P., Halama R., Experimental verification of a steel fillet welded joint model, [In:] J. Kruis, Y. Tsompanakis, B.H.V. Topping (Eds.), Proceedings of the Fifteenth International Conference on Civil, Structural and Environmental Engineering Computing, Civil-Comp Proceedings, Vol. 108, Civil-Comp Press, Stirlingshire 2015, 1-18. DOI: 10.4203/ccp.108.34.
  • [29] Krejsa M., Brozovsky J., Mikolasek D., Parenica P., Halama R., Numerical modeling of steel welded supporting elements, [In:] I. Zolotarev, V. Radolf (Eds.), Proceedings of 22nd International Conference Engineering Mechanics 2016, Institute of Thermomechanics, Academy of Sciences of the Czech Republic, Prague 2016, 322-325.
  • [30] Halama R., Pecenka L., Hornacek L., Smach J., Krejsa M., Selected engineering applications of 3-D strain measurements using ESPI, [In:] P. Padevet, P. Bittnar (Eds.), Proceedings of EAN 2015 - 53rd Conference on Experimental Stress Analysis, Czech Technical University in Prague, 2015, 108-112.
  • [31] Rodriguez-Martin M., Laguela S., Gonzalez-Aguilera D., Martinez J., Thermographic test for the geometric characterization of cracks in welding using IR image rectification, Automation in Construction 2016, 61, 58-65. DOI: 10.1016/j.autcon.2015.10.012.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09e491f4-156f-4018-add5-09a2d4c95a52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.