PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Sedimentological study of the Nikolčice Formation : evidence of the Middle Jurassic transgression onto the Bohemian Massif (subsurface data)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Jurassic sedimentary succession along the eastern margin of the Bohemian Massif starts with mostly fluvial deposits of the Gresten Formation and continues after marine transgression with the deposition of the Nikolčice Formation (Middle Jurassic, Callovian). The provenance and depositional environment of the Nikolčice Formation showed that deposition occurred within offshore, transitional zone, shoreface, foreshore and littoral sand bar environments; however, shoreface and foreshore deposits dominate in the cores studied. The crystalline units along the eastern margins of the Bohemian Massif represent the primary source of deposits of the Nikolčice Formation. An important role was played by acidic and intermediate plutonites and highly metamorphosed metasedimentary rocks (granulite and amphibolite metamorphic facies), which indicates an advanced stage of erosion of the source area. The role of volcanic and intrusive rocks was small. The primary source was followed by an additional recycled source from older sedimentary rocks (especially the Moravo-Silesian Paleozoic deposits – the Líšeň Formation, the Myslejovice Formation). A similarity of the source areas for the Nikolčice Formation and the underlying Gresten Formation was recognized. Identified differences in their source areas are mainly explained by varied erosional levels due to successive exhumation of the source Variscan orogen and possibly also by an expansion of the source area.
Rocznik
Strony
138--155
Opis fizyczny
Bibliogr. 72 poz., rys., tab., wykr.
Twórcy
autor
  • Masaryk University, Faculty of Science, Institute of Geological Sciences, Kotlářská 2, 611 37 Brno, Czech Republic
autor
  • MND, a.s., Úprkova 807/6, 695 01 Hodonín, Czech Republic
  • Masaryk University, Faculty of Science, Institute of Geological Sciences, Kotlářská 2, 611 37 Brno, Czech Republic
Bibliografia
  • 1. Adámek, J., 1986. Geologické poznatky o stavbě mesozoika v úseku Jih jv. svahu Českého masivu (in Czech). Zemní Plyn a Nafta, 31, 4: 453-484.
  • 2. Adámek, J., 2002. Regionálně-geologické zhodnocení sedimentů jury v oblasti jihovýchodních svahů Českého masívu (in Czech). Geologické Výzkumy na Moravě a ve Slezsku v Roce 2001: 9-11.
  • 3. Adámek, J., 2005. The Jurassic floor of the Bohemian Massif in Moravia - geology and palaeogeography. Bulletin of Geosciences, 80: 291-305.
  • 4. Anonymous, 1992. Outline of sedimentation, tectonic framework and hydrocarbon occurrence in Eastern Lower Austria. Austrian Journal of Earth Sciences, 85: 5-96.
  • 5. Aubrecht, R., Méres, Š., 2000. Exotic detrital pyrope-almandine garnets in the Jurassic sediments of the Pieniny Klippen Belt and Tatric Zone: where did they come from? Mineralia Slovaca, 32: 17-28.
  • 6. Aubrecht, R., Méres, Š., Sýkora, M., Mikus, T., 2009. Provenance of the detrital garnets and spinels from the Albian sediments of the Czorsztyn Unit (Pieniny Klippen Belt, Western Carpathians, Slovakia). Geologica Carpathica, 60: 463-483.
  • 7. Bluck, B.J., 1999. Clast assembling, bed-forms and structure in gravel beaches. Transactions of the Royal Society Edinburgh, Earth Sciences, 89: 291-323.
  • 8. Buriánek, D., Tomanová Petrová, P., Otava, J., 2012. Kde je zdroj klastických sedimentů miocénu Brněnska? (in Czech). Acta Musei Moraviae, Scientae Geologicae, 97: 153-166.
  • 9. Campbell, C.V., 1971. Depositional model - Upper Cretaceous Gallup beach shoreline, Ship Rock area, Northwestern New Mexico. Journal of Sedimentary Petrology, 41: 395-405.
  • 10. Catuneanu, O., Galloway, W.E., Kendall, Ch.G.St.C., Miall, A.D., Posamentier, H.W., Strasser, A., Tucker, M.E., 2011. Sequence stratigraphy: methodology and nomenclature. Newsletters on Stratigraphy, 44: 173-245.
  • 11. Cizek, P., Tomek, C., 1991. Large-scaled thin skinned tectonics in the eastern boundary of the Bohemian Massif. Tectonics, 10: 273-286.
  • 12. Clifton, H.E., 1981. Progradational sequences in Miocene shoreline deposits, southeastern Caliente Range, California. Journal of Sedimentary Petrology, 51: 165-184.
  • 13. Clifton, H.E., 2006. A reexamination of facies models for clastic shorelines. Facies Models revisited. SEPM Special Publication, 84: 293-338.
  • 14. Čopjaková, R., 2007. The reflection of provenance changes in the psefitic and psamitic sedimentary fraction of the Myslejovice Formation (heavy mineral analysis) (in Czech). Ph.D. thesis, Masaryk University, Brno.
  • 15. Čopjaková, R, Sulovský, P., Otava, J., 2002. Comparison of the chemistry of detritic pyrope-almandine garnets of the Lulec Conglomerates with the chemistry of granulite garnets from the Czech Massif (in Czech). Geologické Výzkumy na Moravě a ve Slezsku v Roce 2001, Brno: 44-47.
  • 16. Čopjaková, R., Sulovský, P., Paterson, B.A., 2005. Major and trace elements in pyrope-almandine garnets as sediment provenance indicators of the Lower Carboniferous Culm sediments, Drahany Uplands, Bohemian Massif. Lithos, 82: 51-70.
  • 17. Dickinson, W.R., 1985. Interpreting provenance relations from detrital modes of sandstones. In: Provenance of Arenites (ed. G.G. Zuffa): 333-361. D. Reidel Publication Co.
  • 18. Embry, A.F., Johannessen, E.P., 1993. T-R sequence stratigrarphy, facies analysis and reservoir distribution in the uppermost Triassic-Lower Jurassic succession, western Sverdrup Basin, Arctic Canada. NPF Special Publication, 2: 121-146.
  • 19. Eliáš, M., Wessely, G., 1990. The autochthonous Mesozoic on the eastern flank of the Bohemian Massif: an object of mutual geological efforts between Austria and Czechoslovakia. In: Thirty Years of Geological Cooperation Between Austria and Czechoslovakia (eds. D. Minaříková and H. Lobitzer). GBA Vienna, ČGÚ Praha.
  • 20. Faupl, P., 1975. Kristallinvorkommen und terrigene Sedimentgesteine in der Grestener Klippenzone (Lias-Neokom) von Ober- und Niederosterreich. Jahrbuch der Geologischen Bundesanstalt, 118: 1-74.
  • 21. Finger, F., Haunschmid, B., 1988. Die mikroskopische Unterr suchung der akzessorischen Zirkone als Methode zur Klärung der Intrusionsfolge in Granitgebieten - eine Studie im nordostlichen oberosterreichischen Moldanubikum. Jahrbuch der Geologischen Bundesanstalt, 131: 255-266.
  • 22. Force, E.R., 1980. The provenance of rutile. Journal of Sedimentary Research, 50: 485-488.
  • 23. Garzanti, E., Ando, S., 2007. Heavy mineral concentration in modern sands: implications for provenance interpretation. Developments in Sedimentology, 58: 517-545.
  • 24. Hampson, G.J., 2000. Discontinuity surfaces, clinoforms, and facies architecture in a wave-dominated, shoreface-shelf parasequence. Journal of Sedimentary Research, 70: 325-340.
  • 25. Hoppe, G., 1966. Zirkone aus Granuliten. Berichte der Deutschen Gesellschaft fur Geologische Wissenschaften, Reihe B. Mineralogie und Lagerstättenforschung, 11: 47-81.
  • 26. Hubert, J.F., 1962. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composit ion and text ure of sandstones. Journal of Sedimentary Petrology, 32: 440-450.
  • 27. Hunter, R.E., Clifton, H.E., Phillips, R.L., 1979. Depositional processes, sedimentary structures and predicted vertical sequences in barred nearshore systems, northern Oregon coast. Journal of Sedimentary Petrology, 49: 711-726.
  • 28. Ingersoll, R.V., 1990. Actualistic sandstone petrofacies: discriminating modern and ancient source rocks. Geology, 18: 733-736.
  • 29. Jachowicz, M., Přichystal, A., 1997. Lower Cambrian sediments in deep boreholes in south Moravia. Czech Geological Survey Bulletin, 72: 329-332.
  • 30. Kalvoda, J., Bábek, O., Fatka, O., Leichmann, J., Melichar, R., Nehyba, S., Špaček, P., 2008. Brunovistulian terrane (Boher mian Massif, Central Europe) from late Proterozoic to late Palaeozic: a review. International Journal of Earth Sciences, 97: 497-517.
  • 31. Leszczyński, S., Nemec, W., 2015. Dynamic stratigraphy of composite peripheral unconformity in a foredeep basin. Sedimentology, 62: 645-680.
  • 32. Lihou, J.C., Mange-Rajetzky, M.A., 1996. Provenance of the Sardona Flysch, eastern Swiss Alps: example of high-resolution heavy mineral analysis applied to an ultrastable assemblage. Sedimentary Geology, 105: 141-157.
  • 33. Lindhorst, S., Furstenau, J.H., Hass, Ch., Betzler, Ch., 2010. Anatomy and sedimentary model of a hooked spit (Sylt, southern North Sea). Sedimentology, 57: 935-955.
  • 34. Mader, D., 1980. Weitergewachsene Zirkone im Buntsandstein der Westeifel. Der Aufschluss, 31: 163-170.
  • 35. Mange, M.A., Morton, A.C., 2007. Geochemistry of heavy minerals. Developments in Sedimentology, 58: 345-391.
  • 36. Massari, F., Parea, G.C., 1988. Progradational gravel beach sequences in a moderate-to high-energy, microtidal marine environment. Sedimentology, 35: 881-913.
  • 37. Meinhold, G., Anders, B., Kostopoulos, D., Reischmann, T., 2008. Rutile chemistry and thermometry as provenance indicator: an example from Chios Island, Greece. Sedimentary Geology, 203: 98-111.
  • 38. Méres, Š., Aubrecht, R., Gradiński, M., Sýkora, M., 2012. High (ultrahigh) pressure metamorphic terrane rocks as the source of the deiriial garnets from the Middle Jurassic sands and sandstones of the Cracow Region (Cracow-Wieluń Upland, Poland). Acta Geologica Polonica, 62: 231-245.
  • 39. Morton, A.C., 1984. Stability of detrital heavy minerals in Tertiary sandstones from the North Sea Basin. Clay Minerals, 19: 287-308.
  • 40. Morton, A.C., Hallsworth, C.R., 1994. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology, 90: 241-256.
  • 41. Morton, A.C., Hallsworth, C.R., 1999. Processes controlling the composition of detrital heavy mineral assemblages in sandstones. Sedimentary Geology, 124: 3-29.
  • 42. Nehyba, S., Opletal, V., 2016. Depositional environment and provenance of the Gresten Formation (Middle Jurassic) on the southeastern slopes of the Bohemian Massif (Czech Republic, subsurface data). Austrian Journal of Earth Sciences, 109, DOI: 10.17738/ajes. 2016.0020
  • 43. Nehyba, S., Šikula, J., 2007. Depositional architecture, sequence stratigraphy and geodynamic development of the Carpathian Foredeep (Czech Republic). Geologica Carpathica, 58: 53-69.
  • 44. Nehyba, S., Leichman, J., Kalvoda, J., 2001. Depositional environment of the “Old Red” sediments in the Brno area (south-eastern part of the Rhenohercynian zone, Bohemian Massif). Geologica Carpathica, 52: 195-203.
  • 45. Nehyba, S., Roetzel, R., Maštera, L., 2012. Provenance analysis of the Permo-Carboniferous fluvial sandstones of the southern part of the Boskovice Basin and the Zobing Area (Czech Republic, Austria): implications for paleogeographical reconstructions of the post-Variscan collapse basins. Geologica Carpathica, 63: 365-382.
  • 46. Nielsen, L.H., Johannessen, P.N., 2009. Facies architecture and depositional processes of the Holocene-Recent accretionary forced regressive Skagen spit system, Denmark. Sedimento- logy, 56: 935-968.
  • 47. Nielsen, L.H., Johannessen, P.N., Surlyk, F., 1988. A Late Pleistocene coarse-grained spit-platform sequence in northern Jylland, Denmark. Sedimentology, 35: 915-937.
  • 48. Opletal, V., Filák, P., 2013. Upper Carboniferous strata reached by the exploration well Sitborice 1 beneath the Carpathian Thrust- belt units in the area of south-eastern margin of Bohemian Massif. Documenta Geonica, 2013/1, UG AVCR, Ostrava.
  • 49. Otava, J., Sulovský, P., Čopjaková, O., 2000. Provenance changes of the Drahany Culm greywackes: statistical evaluation (in Czech). Geologické Výzkumy na Moravě a ve Slezsku v Roce 1999: 94-98.
  • 50. Picha, F.J., Stráník, Z., Krejčí, O., 2006. Geology and hydrocarbon resources of the Outer Western Carpathians and their foreland, Czech Republic. AAPG Memoir, 84: 49-176.
  • 51. Poldervaart, A., 1950. Statistical studies of zircon as a criterion in granitization. Nature, 165: 574-575.
  • 52. Pupin, J.P., 1980. Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73: 207-220.
  • 53. Pupin, J.P., 1985. Magmatic zoning of hercynian granitoids in France based on zircon typology. Schweizerische Mineralogische und Petrographische Mitteilungen, 65: 29-56.
  • 54. Reinson, G.E., 1984. Barrier-island and associated strand-plain systems. In: Facies Models (ed. R.G. Walker): 119-141. Geoscience Canada.
  • 55. Rider, M.H., 1986. The Geological Interpretation of Well Logs. John Wiley and Sons, Inc., New York.
  • 56. Stráník, Z., Bubík, M., Čech, S., Švábenická, L., 1996. The Upper Cretaceous in South Moravia. Bulletin of the Czech Geological Survey, 71: 1-30.
  • 57. Sturm, R., 2010. Morphology and growth trends of accessory zircons from various granitoids of the south-western Bohemian Massif (Moldanubicum, Austria). Chemie der Erde, 70: 185-196.
  • 58. Štelcl, J., Svoboda, L., Schmidt, J., Zádrapa, K., 1977. K petrografii autochtonního paleozoika a mesozoika platformního fundamentu v podloží karpatské předhlubně a flyšového pásma (úseky “JIH” a “STŘED”) (in Czech). Folia Facultatis Scientiarum Naturalium Universitatis Purkynianae Brunensis, Geologia 14: 5-120.
  • 59. Trask, P.D., 1932. Origin and Environment of Source Sediment of Petroleum. Gulf Publ. Co., Houston: 1-67.
  • 60. Triebold, S., von Eynatten, H., Luvizotto, G.L., Zack, T., 2007. Deducing source rock lithology from detrital rutile geochemistry: an example from the Erzgebirge, Germany. Chemical Geology, 244: 421-436.
  • 61. Triebold, S., von Eynatten, H., Zack, T., 2012. A recipe for the use of rutile in sedimentary provenance analysis. Sedimentary Geology, 282: 268-275.
  • 62. Tucker, M. ed., 1988. Techniques in Sedimentology. Blackwell Science, Oxford.
  • 63. Vavrdová, M., Mikuláš, R., Nehyba, S., 2003. Lower Cambrian siliciclastic sediments in Southern Moravia (Czech Republic) and their paleogeographical constraints. Geologica Carpathica, 52: 67-79.
  • 64. Von Eynatten, H., Gaupp, R., 1999. Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: constraints from framework petrography, heavy mineral analysis and mineral chemistry. Sedimentary Geology, 124: 81-111.
  • 65. Walker, R.G., James, N.P., 1992. Facies Models: Response to Sea Level Changes. Geological Association of Canada, St. John's.
  • 66. Wessely, G., 1988. Der Tiefenanschluss im Wiener Becken und der Molassenzone als Ausgangspunkt fur die Alpenexploration in Osterreich. Erdol Erdgas Kohle, 104: 440-446.
  • 67. Winter, J., 1981. Exakte tephro-stratigraphische Korrelation mit morphologisch differenzierten Zironpopulationen (Grenzbereich Unter/Mitteldevon, Eifel-Ardennen). Neues Jahrbuch fur Geologie und Paläontologie, Abhandlungen, 162: 97-136.
  • 68. Wojewoda, J., Nehyba, S., Gilíková, H., Buriánek, D., 2015. Devonian siliciclastic rocks of the Babí lom locality (southern Moravia, Czech Republic): sedimentary environment reconstruction and provenance study. Geological Quarterly, 59 (1): 229-238.
  • 69. Zack, T., von Eynatten, H., Kronz, A., 2004a. Rutile geochemistry and its potential use in quantitative provenance studies. Sedimentary Geology, 171: 37-58.
  • 70. Zack, T., Moraes, R., Kronz, A., 2004b. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology, 148: 471-488.
  • 71. Zecchin, M., 2007. The architectural variability of small-scale cycles in shelf and ramp clastic systems: the controlling factors. Earth-Science Reviews, 84: 21-5.
  • 72. Zimmerle, W., 1979. Accessory zircon from rhyolite, Yellowstone National Park (Wyoming, U.S.A.). Zeitschrift der deutschen Geologischen Gesellschaft, 130: 361-369.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09e45188-756b-465a-be4f-1e1473d0d818
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.