PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study and application of high-resolution methods for reef reservoir identification

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reefs represent a special type of carbonate trap that plays a key role in the migration, accumulation, and formation of a reservoir. They have commonly been the targets of exploration and development. However, reefs have complex interior structures and easily grow as thin, interbedded geological frames with reef microfacies that include the cap, core, and base of the reef. Because of the inherent drawbacks of seismic signals, including their low frequencies and narrow bandwidths, it is difficult to accurately identify reef reservoirs. Fortunately, the seismic frequency, phase, energy, waveform and other dynamic and geometrical properties can be used to compensate for the energy, expand the frequency bandwidth, and decompose and reconstruct the wavelet to obtain high-resolution seismic data. These data can highlight certain seismic responses of reefs, including boundary reflections, dome-shaped reflections from the reef outline, strong reflections from the reef cap, reflections from the reef bottom, and onlap reflections from the reef flanks. Some impedance response regularities, such as the lower impedance of the reef cap relative to the reef core and biodetritus beach and the fluctuating impedance of the reef-flat complex, are observed by combining log data with geological and high-resolution seismic data for a reef reservoir inversion. These methods were applied to the Changxing Formation in the Yuanba Gas Field. Good prediction results were obtained with a high consistency between the log and seismic data in a comparative analysis with the original seismic data and well logs.
Czasopismo
Rocznik
Strony
907--917
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • College of Earth Science, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China
autor
  • State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China
  • College of Geophysics, Chengdu University of Technology, Chengdu, China
autor
autor
  • Exploration & Production Institute, Southwest Oil & Gas Company, SINOPEC, Chengdu, China
autor
  • Oil Exploration & Production Institute, SINOPEC, Beijing, China 6Geophysical R&D Center, Bureau of Geophysical Prospecting, CNPC, Beijing, China
Bibliografia
  • 1. Bi CC, Li LX, Mei Y, Zhang YC, He C (2007) Geological control factors of Changxing organic reef distribution and seismic prediction techniques, East Sichuan Basin. Nat Gas Geosci 18(4):2–7. doi:10.3969/j.issn.1672-1926.2007.04.005 (in Chinese)
  • 2. Cai XY (2011) The subtly method of reservoir and exploration effects on the organic reef-beach body of Changxing Formation, Yuanba Area, Northeastern Sichuan. Eng Sci 13:28–33. doi:10.3969/j.issn.1009-1742.2011.10.004 (in Chinese)
  • 3. Castagna JP, Sun SJ, Siegfried RW (2003) Instantaneous spectral analysis: detection of low-frequency shadows associated with hydrocarbons. Lead Edge 22(2):120–127. doi:10.1190/1.1559038
  • 4. Chai XT (2012) Research for spectrum inversion method based on LSQR algorithm. Geophys Prospect Petrol 51(1):11–18. doi:10.3663/j.issn.1000-1441.2012.01.002 (in Chinese)
  • 5. Chen Y (2011) Prediction on reef reservoir in Changxing group of Yuanba area, Northeast Sichuan Basin. Geophys Prospect Petrol 50(2):173–180 (in Chinese)
  • 6. Cheng BJ, Xu TJ, Robbins B, Shen ZM (2015) Reef reservoir identification by wavelet decomposition and reconstruction: a case study from Yuanba Gas Field in China. Acta Geophys 63(4):1025–1043. doi:10.1515/acgeo-2015-0028
  • 7. Countiss ML (2002) Frequency-enhanced imaging of stratigraphically complex, thin-bed reservoirs: a case study from south marsh island block 128 Field. Lead Edge 21(9):826–836. doi:10.1190/1.1508943
  • 8. Gao JH, Wu RS, and Wang BJ (2001) A new type of analyzing wavelet and its applications for extraction of instantaneous spectrum bandwidth. In: 71th Annual international meeting, SEG, Expanded Abstracts, pp 1937–1940. doi:10.1190/1.1816515
  • 9. Gavin HJ (2002) A new technology for high frequency imaging using seismic data comes to the North Sea. First Break 20(11):695–698
  • 10. He J, Wu SH, Cai K (2011) Seismic prediction for Northeast Sichuan Yuanba region Changxing Formation’s bank and reef sedimentary facies. Neijiang Technol 32(11):125–126. doi:10.3969/j.issn.1006-1436.2011.11.105 (in Chinese)
  • 11. Hu WG, Pu Y, Yi XL, Xiao W, You SK, Zhao ZN (2010) A tentative discussion on the recognition of bioherm in Yuanba area Eastern Sichuan province. Geophy Geochem Explor 34(5):635–642 (in Chinese)
  • 12. Kjartansson E (1979) Constant Q-wave propagation and attenuation. J Geophys Res Part B Solid Earth 84(B9):4737–4748. doi:10.1029/JB084iB09p04737
  • 13. Kolsky H (1953) Stress waves in solids. Oxford University Press, London, pp 81–83
  • 14. Li ZS, Guo XB (2007) Predicting the distribution of thin bed reservoirs by broad frequency band seismic. Appl Geophys 4(2):118–126. doi:10.1007/s11770-007-0017-8
  • 15. Liu H (2011) Seismic identification characteristics for Northeast Sichuan Yuanba region Changxing Formation’s bank and reef sedimentary facies. Sci Technol West China 10(31):37–38. doi:10.3969/j.issn.1671-6396.2011.31.018 (in Chinese)
  • 16. Liu JL, Marfurt KJ (2005) Matching pursuit decomposition using Morlet wavelets. In: 75th Annual international meeting, SEG, Expanded Abstracts, pp 786-789. doi:10.1190/1.2148276
  • 17. Ma YS, Mon CL, Tan QY, Yu Q, Wang RH (2007) Reef-bank features and their constraint to reservoirs of natural gas, from Permian Changxing Formation to Triassic Feixianguan formation in Daxian-Xuanhan area of Sichuan province, South China. Earth Sci Front 14(1):182–192. doi:10.1016/S1872-5791(07)60007-4
  • 18. Puryear CI, Castagna JP (2008) Layer-thickness determination and stratigraphic interpretation using spectral inversion: theory and application. Geophysics 73(2):37–48. doi:10.1190/1.2838274
  • 19. Sinha S, Routh PS, Anno PD, Castagna JP (2005) Spectral decomposition of seismic data with continuous-wavelet transformation. Geophysics 70(6):19–25. doi:10.1190/1.2127113
  • 20. Sun XP, Zhang Y, Zhang YQ, Zhou C (2010) Frequency-broadening processing technology’s application in the thin-formation oil reservoir’s development dynamic analysis. Oil Geophys Prospect 45(5):695–699 (in Chinese)
  • 21. Thang N, John C (2000) Matching pursuit of two-dimensional seismic data and Its filtering application. In: 70th Annual international meeting, SEG, Expanded Abstracts, pp 2067–2069
  • 22. Wang YH (2002) A stable and efficient approach of inverse Q filtering. Geophysics 67(3):657–663. doi:10.1190/1.1468627
  • 23. Wang YH (2006) Inverse Q-filter for seismic resolution enhancement. Geophysics 71(3):V51–V60. doi:10.1190/1.2192912
  • 24. Wang YH (2007) Seismic time-frequency spectral decomposition by matching pursuit. Geophysics 72(1):13–20. doi:10.1190/1.2387109
  • 25. Wang YH (2010) Multichannel matching pursuit for seismic trace decomposition. Geophysics 75(4):61–66. doi:10.1190/1.3462015
  • 26. Xie YJ, Zheng JM, Liu G (2012) Application of high-frequency expanding technique in improving resolution of seismic data. Recent Dev World Seismol 399(3):28–33. doi:10.3969/j.issn.0235-4975.03.006 (in Chinese)
  • 27. Xu YH (2006) Application of optimized high-frequency expanding technique in coalfield exploration. Coal Geol China 18(2):52–54 (in Chinese)
  • 28. Xu TJ, Shen ZM, Wen XK (2010) Research and application of multi-wavelet decomposition and reconstructing technology. J Chengdu Univ Technol (Sci Technol Ed) 37(6):660–665. doi:10.3969/j.issn.1671-9727.2010.06.011 (in Chinese)
  • 29. Yan HY, Zhao Y, Zhao QH, Li XX, Jiang NS (2011) A kind of method for improving inverse Q filtering’s VSP Resolution. Oil Geophys Prospect 46(6):873–880 (in Chinese)
  • 30. Yuan HJ, Wu SG, Wang JB, Dong N, Zhou XY, Liu JZ, Xia HM, Xiao HM, She G, Yu WQ (2008) Frequency-broadening processing technology’s application in the development of Daniudi gas field exploration. Oil Geophys Prospect 43(1):69–75. doi:10.3321/j.issn:1000-7210.2008.01.012 (in Chinese)
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09e19535-1648-4648-b840-d03131745559
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.