PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface free energy and roughness of flowable dental composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The surface properties like roughness, wettability and surface free energy are important for utility properties of traditional and flowable dental restorative composites, due to their role in plaque formation, discoloration, mechanical wear or adhesion and bonding. The goal of our work was to assess the surface free energy (SFE) and the surface roughness (Ra) of three commercial flowable dental composites: everX Flow (bulk), everX Flow (dentin) and Flow-Art. Methods: Surface roughness, contact angle and surface free energy were determined for tested composites. Two surface states (control and roughened) were compared. Roughness was measured with the use of the 3D optical profilometer. The contact angle (CA) was determined through the sessile drop method with the use of four different probing liquids. This enabled to apply two surface free energy approaches (Owens–Wendt (O-W) and van Oss– Chaudhury–Good (LWAB)). Additionally, Zisman’s approach (γC) was used. Results: The water contact angle values were similar for Flow-Art (67.56±1.49°) and everX Flow (bulk) (68.94±2.72°) compared to higher value for everX Flow (dentin) (74.39±2.05°). SFE was in the range from 43 to 50 mJ/m2 for O-W and from to 62 mJ/m2 for LWAB. The γC was from 37 47 to 45 mJ/m2 . Conclusions: Roughening composites’ surface influenced on increasing the CA value. All approaches of surface free energy calculations provide useful data for predicting interactions between flowable composites and dental tissues. Tested composites showed good wetting for initial state of surface after polymerization. These influence on better adhesion of the material to the bonding system during dental restoration.
Rocznik
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Department of Applied Mechanics and Biomechanics, Cracow University of Technology, Cracow, Poland
  • Faculty of Mechanical Engineering, Department of Applied Mechanics and Biomechanics, Cracow University of Technology, Cracow, Poland
  • Faculty of Mechanical Engineering, Department of Applied Mechanics and Biomechanics, Cracow University of Technology, Cracow, Poland
  • College of Economics and Computer Science in Cracow, Cracow, Poland
Bibliografia
  • 1. BEHL S., RAJU, RAJAN G., ELLAKWA A., FARRAR P., PRUSTYA B.G., Physical and mechanical characterization of flowable dental composites reinforced with short aspect ratio micro-sized S-Glass fibre,. Mater. Sci. Eng. C, 2020, 111, 110771, DOI: 10.1016/j.msec.2020.110771.
  • 2. VOUVOUDI E.C., Overviews on the progress of flowable dental polymeric composites: their composition, polymerization process, flowability and radiopacity aspects, Polymers 2022, 14, 418, DOI: 10.3390/polym14194182.
  • 3. KHORAMIAN TUSI S., HAMDOLLAHPOOR H., MOHAMMADI SAVADROODBARI M.; SHEIKH FATHOLLAHI M., Comparison of Polymerization Shrinkage of a New Bulk-fill Flowable Composite with Other Composites: An in Vitro Study, Clin. Exp. Dent. Res. 2022, 8, 1605–1613, DOI: 10.1002/cre2.656.
  • 4. DA SILVA PEREIRA R.A., DE BRAGANÇA G.F., VILELA A., DE DEUS R.A., MIRANDA R.R., VERÍSSIMO C., SOARES C.J., Post-gel and total shrinkage stress of conventional and bulk-fill resin composites in endodontically-treated molars, Oper. Dent., 2020, 45(5), E217–E226, DOI: 10.2341/19-187-L.
  • 5. IMTIAZ T., GANESH S.B., JAYALAKSHMI S., Surface roughness changes of two 461 composite resin restorative materials after thermocycling, J. Adv. Pharm. Tech. Res., 462 2022, 13, 466-9, DOI: 10.4103/japtr.japtr_255_22.
  • 6. SOFAN E., SOFAN A., PALAIA G., TENORE G., ROMEO U., MIGLIAU G., Classification review of dental adhesive systems: from the IV generation to the universal type, Ann Stomatol (Roma), 2017; 8(1): 1–17, DOI: 10.11138/ads/2017.8.1.001.
  • 7. ZHAO Z, WANG Q, ZHAO J, ZHAO B, MA Z., ZHANG Adhesion of Teeth. Front. Mater. C, 2021, 7:615225. DOI: 10.3389/fmats.2020.615225.
  • 8. OKULUS Z., STRZEMIECKA B., CZARNECKA B., BUCHWALD T., VOELKEL A., Surface energy of bovine dentin and enamel by means of inverse gas chromatography, Mater. Sci. Eng. C, 2015, 49, 382-389, DOI: 10.1016/j.msec.2015.01.038.
  • 9. RAMAKRISHNAIAH R., ALKHERAIF A.A., DIVAKAR D.D., MATINLINNA J.P., VALLITTU P.K., The effect of hydrofluoric acid etching duration on the surface micromorphology, roughness, and wettability of dental ceramics, Int. J. Mol. Sci., 2016, 17, 822, DOI: 10.3390/ijms17060822.
  • 10. COMBE E.C., OWEN B.A., HODGES J.S., A protocol for determining the surface free energy of dental materials, Dent. Mater., 2004, 20, 262-268, DOI: 10.1016/S0109-5641(03)00102-7.
  • 11. TSUJIMOTO A., IWASA M., SHIMAMURA Y., MURAYAMA R., TAKAMIZAWA T., MIYAZAKI M., Enamel bonding of single-step self-etch adhesives: Influence of surface energy characteristics, J. Dent., 2010, 38(2), 123-130, DOI: 10.1016/j.jdent.2009.09.011.
  • 12. KOZMOS M., VIRANT P., ROJKO F., ABRAM A., RUDOLF R., RASPOR P., ZORE A., BOHINC K., Bacterial adhesion of Streptococcus mutans to dental material surfaces, Molecules, 2021, 26, 1152, DOI: 10.3390/molecules26041152.
  • 13. JIN J., TAKAHASHI R., HICKEL R., KUNZELMANN K-H., Surface properties of universal and flowable nanohybrid composites after simulated tooth brushing, Am. J. Dent., 2014, 27(3), 149-54. 14. LAI G., ZHAO L., WANG J., KUNZELMANN K-H., Surface properties and color stability of dental flowable composites influenced by simulated toothbrushing, Dent. Mater. J., 2018, 37(5), 717-724, DOI: 10.4012/dmj.2017-233.
  • 15. BIJELIC-DONOVA J., GAROUSHI S., LASSILA L.V., ROCCA G.T., VALLITTU P.K., Crack propagation and toughening mechanism of bilayered short-fiber reinforced resin composite structure -Evaluation up to six months storage in water, Dent. Mater. J., 2022, 30, 41(4), 580-588, DOI: 10.4012/dmj.2021-321.
  • 16. LASSILA L., NOVOTNY R., SÄILYNOJA E.; VALLITTU P.K., GAROUSHI S., Wear behavior at margins of direct composite with CAD/CAM composite and enamel, Clin. Oral. Invest., 2023, 27, 2419–2426, DOI: DOI: 10.1007/s00784-023-04883-w.
  • 17. SZABÓ V.T., SZABÓ B., BARCSAYNÉ-TÁTRAI N., MÉSZÁROS C., BRAUNITZER G., SZABÓ B.P., LASSILA L., GAROUSHI S., FRÁTER M., Fatigue resistance of dissected lower first molars restored with direct fiber-reinforced bridges-an in vitro pilot study, Polymers, 2023, 15, 1343, DOI: 10.3390/polym15061343.
  • 18. LASSILA L., HAAPSAARI A., VALLITTU P.K., GAROUSHI S., Fracture Resistance of Anterior Crowns Reinforced by Short-Fiber Composite, Polymers, 2022, 14, 1809, DOI: DOI: 10.3390/polym14091809.
  • 19. OTERO C.A., BIJELIC-DONOVA J., SARATTI C.M., VALLITTU P.K., BELLA E., KREJCI I., ROCCA G.T., The influence of FRC base and bonded CAD/CAM resin composite endocrowns on fatigue behavior of cracked endodontically-treated molars, J. Mech. Beh. Biomed. Mat., 2021, 121, 104647, DOI: 10.1016/j.jmbbm.2021.104647.
  • 20. FRÁTER M., SÁRY T., VINCZE-BANDI E., VOLOM A., BRAUNITZER G., SZABÓP.B., GAROUSHI S., FORSTER A., Fracture behavior of short fiber-reinforced direct restorations in large MOD cavities, Polymers, 2021, 13, 2040, DOI: 10.3390/polym13132040.
  • 21. SUNI A.O., LASSILA L.V.J, TUOKKO J.K., GAROUSHI S., VALLITTU P.K., Adhesion of individually formed fiber post adhesively luted with flowable short fiber composite, Biomater. Invest. Den., 2023, 10(1), DOI: 10.1080/26415275.2023.2209593.
  • 22. SOWA M., PRZEKORA A., PAŁKA K., Microstructure and surface free energy of light-cured dental composites after their modification with liquid rubber, Engineering of Biomaterials, 2022, 25(164), 9-15, DOI: 10.34821/eng.biomat.164.2022.9-15.
  • 23. BRAJKOVIC D., ANTONIJEVIC D., MILOVANOVIC P., KISIC D. ZELIC K., DJURIC M. RAKOCEVIC Z., Surface characterization of the cement for retention of implant supported dental prostheses: In vitro evaluation of cement roughness and surface free energy, App. Surf. Sci., 2014, 311, 131-138, DOI: 10.1016/j.apsusc.2014.05.027.
  • 24. ISHII R., TAKAMIZAWA T., TSUJIMOTO A., SUZUKI S., IMAI A., BARKMEIER W.W., LATTA M.A., MIYAZAKI M., Effects of finishing and polishing methods on the surface roughness and surface free energy of bulk-fill resin composites, Oper Dent., 2020, 45(2), E91-E104, DOI: 10.2341/18-246-L.
  • 25. SHEKHAR, S., SUPRABHA B.S., SHENOY R., NATARAJAN S., RAO A., Comparative Evaluation of Surface Roughness and Wettability of an alkasite with nano bulk-fill and nanofilled resin composite restorative materials: In vitro Study, Contemp Clin Dent, 2022, 13(4), 337–343. DOI:10.4103/ccd.ccd_95_21.
  • 26. https://arkonadent.com/kontakt/, access data: 2023-03-02. 531
  • 27. https://www.gcamerica.com/products/operatory/everx_flow/everx_flow_world_of_proof_study.pdf, access data: 2023-03-02.
  • 28. NISHIGAWA G., MARUO Y., IRIE M., MAEDA N., YOSHIHARA K., NAGAOKA N., MATSUMOTO T., MINAGI S., Various effects of sandblasting of dental restorative materials, Plos One, 2016, 14;11(1), 0147077, DOI: 10.1371/journal.pone.0147077.
  • 29. EN ISO 21920-2:2022: Geometrical product specifications (GPS) - Surface texture: Profile - Part 2: Terms, definitions and surface texture parameters.
  • 30. EN ISO 25178-2:2021: Geometrical product specifications (GPS) - Surface texture: Areal - Part 2: Terms, definitions and surface texture parameters.
  • 31. OWENS D.K., WENDT R.C., Estimation of the surface free energy of polymers, J. Appl. Polym. Sci., 1969, 13, 1741-1747, DOI: 10.1002/app.1969.070130815.
  • 32. OSS C.J., CHAUDHURY M.K., GOOD R.J., Interfacial Lifshiz-van der Waals and polar interactions in macroscopic systems, Chem. Rev., 1988, 8, 927-941, DOI: 10.1021/cr00088a006.
  • 33. SIBONI S., VOLPE C.D., MANIGLIO D., BRUGNARA M., The solid surface free energy calculation II. The limits of the Zisman and of the “equation-of-state” approaches, J. Colloid Interface Sci., 2004, 271(2), 454-472, DOI: 10.1016/j.jcis.2003.09.050.
  • 34. ASMUSSEN E., PEUTZFELDT A., Resin composites: Strength of the bond to dentin versus surface energy parameters, Dent. Mat., 2005, 21(11), 1039-1043, DOI: 10.1016/j.dental.2004.12.004.
  • 35. OYAMA K., TSUJIMOTO A., OTSUKA E., SHIMIZU Y., SHIRATSUCHI K., TSUBOTA K., TAKAMIZAWA T., MIYAZAKI M., Influence of oxygen inhibition on the surface free energy and enamel bond strength of self-etch adhesives, Dent. Mater. J., 2012, 31(1), 26–31, DOI:10.4012/dmj.2011-162.
  • 36. SZCZESIO-WLODARCZYK A., KOPACZ K., SZYNKOWSKA-JOZWIK M.I., SOKOLOWSKI, J., BOCIONG K., An Evaluation of the Hydrolytic Stability of Selected Experimental Dental Matrices and Composites, Materials, 2022, 15, 5055, DOI: 10.3390/ma15145055.
  • 37. BILGILI D., DÜNDAR A., BARUTÇUGIL C., TAYFUN D., ÖZYURT Ö.K., Surface properties and bacterial adhesion of bulk-fill composite resins, J. Dent., 2020, 95, 103317, DOI: 10.1016/j.jdent.2020.103317.
  • 38. LIBER-KNEĆ A., ŁAGAN S., Surface testing of dental biomaterials-determination of contact angle and surface free energy, Materials, 2021, 14 (11), DOI: 10.3390/ma14112716.
  • 39. BAIER R.E., Correlations of materials surface properties with biological responses, J. Surf. Eng. Mater. Adv. Technol., 2015, 5, 42-51, DOI: 10.4236/jsemat.2015.51005.
  • 40. MEENAKUMARI C., BHAT K.M., BANSAL R., SINGH N., Evaluation of mechanical properties of newer nanoposterior restorative resin composites: An in vitro study, Contemp. Clin. Dent., 2018 9(1), 142-S146, DOI: 10.4103/ccd.ccd_160_18.
  • 41. RANKA S., RAO A.S., SHAH U., SOLANKI D., PAWAR A.M., REDA R., ZANZA A., TESTARELLI L., Comparative evaluation of two different fiber-reinforced composite materials in Class 1 post-endodontic restorations in molars - A randomized clinical study, Materials, 2022, 15, 7858, DOI: 10.3390/ma15217858.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Brak numeracji stron
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09dd8116-d265-480c-b906-803cd295a767
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.