Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of this work was to determine the essence of the influence of the impact velocity (5, 7, and 9 m/s) on Hertzian stresses and the erosion mechanism of ferritic-pearlitic S355J2 steel. The investigations were carried out using a slurry pot tester. S355J2 steel showed a strong sensitivity to changes in impact velocity. A significant increase in erosion rate was observed at a velocity of 9 m/s. This increase was 5-fold and over 15-fold compared to velocities of 7 m/s and 5 m/s, respectively. The study of Hertzian stress is crucial in erosion research because it helps understand how impact energy is absorbed by the eroded material and the mechanisms that cause surface wear. A linear increase in mean contact pressure and maximum shear stress was observed with increasing impact velocity. The mean contact pressure increased from 4.3 GPa to 5.5 GPa and the maximum shear stress increased from 2.0 GPa to 2.5 GPa. The kinetic energy of the solid particles that hits the eroded steel is distributed in the contact area, which leads to various deformations and wear mechanisms. The primary type of deformation was fatigue degradation of the surface layers of the eroded steel. The high kinetic energy of solid particles contributed to the formation of plastic deformations and strongly deformed steel flakes. Higher impact velocities generally result in greater forces and contact stresses on the material surface. This led to the intensification of plastic deformation in the contact areas and increased the Hertzian stresses.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
62--77
Opis fizyczny
Bibliogr. 66 poz., fig.,
Twórcy
autor
- Department of Erosion Processes, Centre of Hydrodynamics, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, ul. Fiszera 14, 80-231 Gdansk, Poland
autor
- Department of Manufacturing and Production Engineering, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
- 1. Javaheri V., Porter D., Kuokkala V.T. Slurry erosion of steel – Review of tests, mechanisms and materials. Wear 2018; 408–409: 248–73. https://doi.org/10.1016/j.wear.2018.05.010.
- 2. Clark H.M. The influence of the flow field in slurry erosion. Wear 1992, 152:223–40. https://doi.org/10.1016/0043-1648(92)90122-O.
- 3. Grewal H.S., Agrawal A., Singh H. Design and development of high-velocity slurry erosion test rig using CFD. Journal of Materials Engineering and Performance 2013; 22: 152–61. https://doi.org/10.1007/s11665-012-0219-y.
- 4. Ojala N., Valtonen K., Antikainen A., Kemppainen A., Minkkinen J., Oja O. Wear performance of quenched wear resistant steels in abrasive slurry erosion. Wear 2016; 354–355: 21–31. https://doi.org/10.1016/j.wear.2016.02.019.
- 5. Buszko M.H., Krella A.K., Marchewicz A., Gajowiec G. Effect of annealing temperature on slurry erosion resistance of ferritic X10CrAlSi18 steel. Tribology International 2021; 153: 106648. https://doi.org/10.1016/j.triboint.2020.106648.
- 6. Krella A.K., Buszko M.H., Gajowiec G. Degradation of ferritic X10CrAlSi18 stainless steel caused by slurry. Engineering Failure Analysis 2020; 116: 104696. https://doi.org/10.1016/j.engfailanal.2020.104696.
- 7. Buszko M.H., Krella A.K. An influence of factors of flow condition, particle and material properties on slurry erosion resistance. Advances in Materials Science 2019; 19: 28–53. https://doi.org/10.2478/adms-2019-0010.
- 8. Buszko M.H., Krella A.K. Slurry erosion – Design of test devices. Advances in Materials Science 2017; 17: 5–17. https://doi.org/10.1515/adms-2017-0007.
- 9. Skoczylas A. The effect of vibratory shot peening on the geometric structure of the surface of elements machined by laser and abrasive water jet cutting. Advances in Science and Technology Research Journal 2023; 17: b1–11. https://doi.org/10.12913/22998624/170970.
- 10. Bławucki S., Zaleski K. The numerical FEM Model of the kinematics of the vibratory shot peening process. Advances in Science and Technology Research Journal 2017; 11: 260–9. https://doi. org/10.12913/22998624/80841.
- 11. Świetlicki A., Szala M., Walczak M. Effects of shot peening and cavitation peening on properties of surface layer of metallic materials—A short review. Materials 2022; 15. https://doi.org/10.3390/ma15072476.
- 12. Oka Y.I., Okamura K., Yoshida T. Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation. Wear 2005; 259: 95–101. https://doi.org/10.1016/j.wear.2005.01.039.
- 13. Patil M.S., Deore E.R., Jahagirdar R.S., Patil S.V. Study of the parameters affecting erosion wear of ductile material in solid-liquid mixture. World Congress on Engineering 2011; III.
- 14. Nguyen Q.B., Lim C.Y.H., Nguyen V.B., Wan Y.M., Nai B., Zhang Y.W. Slurry erosion characteristics and erosion mechanisms of stainless steel. Tribology International 2014; 79: 1–7. https://doi.org/10.1016/j.triboint.2014.05.014.
- 15. Desale G.R., Gandhi B.K., Jain S.C. Slurry erosion of ductile materials under normal impact condition. Wear 2008; 264: 322–30. https://doi.org/10.1016/j.wear.2007.03.022.
- 16. López D., Congote J.P., Cano J.R., Toro A., Tschiptschin A.P. Effect of particle velocity and impact angle on the corrosion-erosion of AISI 304 and AISI 420 stainless steels. Wear 2005; 259: 118–24. https://doi.org/10.1016/j.wear.2005.02.032.
- 17. Alam T., Islam M.A., Farhat Z.N. Slurry erosion of pipeline steel: effect of velocity and microstructure. Journal of Tribology 2016; 138: 1–10. https://doi.org/10.1115/1.4031599.
- 18. Akbarzadeh E., Elsaadawy E., Sherik A.M., Spelt J.K., Papini M. The solid particle erosion of 12 metals using magnetite erodent. Wear 2012; 282–283: 40–51. https://doi.org/10.1016/j.wear.2012.01.021.
- 19. Mbabazi J.G., Sheer T.J., Shandu R. A model to predict erosion on mild steel surfaces impacted by boiler fly ash particles. Wear 2004; 257: 612–24. https://doi.org/10.1016/j.wear.2004.03.007.
- 20. Alam T., Farhat Z.N. Slurry erosion surface damage under normal impact for pipeline steels. Engineering Failure Analysis 2018; 90: 116–28. https://doi.org/10.1016/j.engfailanal.2018.03.019.
- 21. Shitole P.P., Gawande S.H., Desale G.R., Nandre B.D. Effect of Impacting Particle Kinetic Energy on Slurry Erosion Wear. Journal of Bio- and TriboCorrosion 2015; 1: 1–9. https://doi.org/10.1007/s40735-015-0028-6.
- 22. Malik J., Toor I.H., Ahmed W.H., Gasem Z.M., Habib M.A., Ben-Mansour R. Evaluating the effect of hardness on erosion characteristics of aluminum and steels. Journal of Materials Engineering and Performance 2014; 23: 2274–82. https://doi.org/10.1007/s11665-014-1004-x.
- 23. Walczak M., Matijošius J., Özkan D., Pasierbiewicz K. Effect of shot peening parameters on Surface properties and corrosion resistance of 316L stainless steel. Advances in Science and Technology Research Journal 2024; 18: 296–304. https://doi.org/10.12913/22998624/186513.
- 24. Singh J., Vasudev H., Szala M., Gill H.S. Neural computing for erosion assessment in Al-20TiO2 HVOF thermal spray coating. International Journal on Interactive Design and Manufacturing 2024; 18: 2321–32. https://doi.org/10.1007/s12008-023-01372-y.
- 25. Desale G.R., Gandhi B.K., Jain S.C. Particle size effects on the slurry erosion of aluminium alloy (AA 6063). Wear 2009; 266: 1066–71. https://doi.org/10.1016/j.wear.2009.01.002
- 26. Lathabai S. Effect of grain size on the slurry erosive wear of Ce-TZP ceramics. Scripta Materialia 2000; 43: 465–70. https://doi.org/10.1016/S1359-6462(00)00415-2.
- 27. Clark H.M., Hartwich R.B. A re-examination of the “particle size effect” in slurry erosion. Wear 2001; 248: 147–61. https://doi.org/10.1016/S0043-1648(00)00556-1.
- 28. Lindgren M., Perolainen J. Slurry pot investigation of the influence of erodent characteristics on the erosion resistance of austenitic and duplex stainless steel grades. Wear 2014; 319: 38–48. https:/doi.org/10.1016/j.wear.2014.07.006.
- 29. Desale G.R., Gandhi B.K., Jain S.C. Effect of erodent properties on erosion wear of ductile type materials. Wear 2006; 261: 914–21. https://doi.org/10.1016/j.wear.2006.01.035.
- 30. Desale G.R., Gandhi B.K., Jain S.C. Effect of physical properties of solid particle on erosion wear of ductile materials. World Tribology Congress III, 1, ASME 2005; 149–50. https://doi.org/10.1115/WTC2005-63997.
- 31. Vite-Torres M., Laguna-Camacho J.R., Baldenebro-Castillo R.E., Gallardo-Hernández E.A., Lasorsa C.A., Villagrán-Villegas L.Y. Study of solid particle erosion on AISI D2 using angular silicon carbide and steel round grit particles. Tribology - Materials, Surfaces and Interfaces 2014; 8: 105–10. https://doi.org/10.1179/1751584X13Y.0000000057.
- 32. Vite-Torres M., Laguna-Camacho J.R., Baldenebro-Castillo R.E., Gallardo-Hernández EA, Vera-Cárdenas E.E., Vite-Torres J. Study of solid particle erosion on AISI 420 stainless steel using angular silicon carbide and steel round grit particles. Wear 2013; 301: 383–9. https://doi.org/10.1016/j.wear.2013.01.071.
- 33. Babu P.S., Basu B., Sundararajan G. The influence of erodent hardness on the erosion behavior of detonation sprayed WC-12Co coatings. Wear 2011; 270: 903–13. https://doi.org/10.1016/j.wear.2011.02.019.
- 34. Ojala N., Valtonen K., Kivikytö-Reponen P., Vuorinen P., Kuokkala V.T. High speed slurry-pot erosion wear testing with large abrasive particles. TRIBOLOGIA - Finnish Journal of Tribology 2015; 33: 36–44.
- 35. Świetlicki A., Walczak M., Szala M. Effect of shot peening on corrosion resistance of additive manufactured 17-4PH steel. Materials SciencePoland 2022; 40: 135–51. https://doi.org/10.2478/msp-2022-0038.
- 36. Nguyen Q.B., Nguyen V.B., Lim C.Y.H., Trinh Q.T., Sankaranarayanan S., Zhang Y.W. Effect of impact angle and testing time on erosion of stainless steel at higher velocities. Wear 2014; 321: 87–93. https://doi.org/10.1016/j.wear.2014.10.010.
- 37. Kübarsepp J., Juhani K., Tarraste M. Abrasion and erosion resistance of cermets: A review. Materials 2022; 15. https://doi.org/10.3390/ma15010069.
- 38. Hussainova I., Kubarsepp J., Pirso J. Mechanical properties and features of erosion of cermets. Wear 2001; 250–251: 818–25. https://doi.org/10.1016/S0043-1648(01)00737-2.
- 39. Barber J., Mellor B.G., Wood R.J.K. The development of sub-surface damage during high Energy solid particle erosion of a thermally sprayed WC-Co-Cr coating. Wear 2005; 259: 125–34. https://doi.org/10.1016/j.wear.2005.02.008.
- 40. Johnson K.L. Contact mechanics. Cambridge University Press, 1985.
- 41. Kirchner H.P., Gruver R.M. Localized impact damage in glass. Materials Science and Engineering 1977; 28: 153–60. https://doi.org/10.1016/0025-5416(77)90099-4
- 42. Ojala N., Valtonen K., Minkkinen J., Kuokkala V.T. Edge and particle embedment effects in low- and high-stress slurry erosion wear of steels and elastomers. Wear 2017; 388–389: 126–35. https://doi.org/10.1016/j.wear.2017.06.004.
- 43. Ojala N., Valtonen K., Heino V., Kallio M., Aaltonen J., Siitonen P. Effects of composition and microstructure on the abrasive wear performance of quenched wear resistant steels. Wear 2014; 317: 225–32. https://doi.org/10.1016/j.wear.2014.06.003.
- 44. Katsumata T., Matsubara T., Yamamoto K., Iwai Y. Evaluation of coating properties with a Micro Slurry-jet Erosion (MSE) test: – Effects of the shape and size of erodent particles on erosion behaviors of TiN coating –. Surface and Coatings Technoogy 2021; 421: 127443. https://doi.org/10.1016/j.surfcoat.2021.127443.
- 45. Liang L., Pang Y., Tang Y., Zhang H., Liu H., Liu Y. Combined wear of slurry erosion, cavitation erosion, and corrosion on the simulated ship surface. Advances in Mechanical Engineering 2019; 11: 1–14. https://doi.org/10.1177/1687814019834450.
- 46. Borko K., Hadzima B., Pastorek F. The corrosion properties of S355J2 steel welded joint in chlorides environment. Periodica Polytechnica Transportation Engineering 2018; 1–6. https://doi.org/10.3311/PPtr.12111.
- 47. Miarka P., Cruces A.S., Seitl S., Malíková L., Lopez-Crespo P. Influence of the constraint effect on the fatigue crack growth rate in S355 J2 steel using digital image correlation. Fatigue and Fracture of Engineering Materials and Structures 2020; 43: 1703–18. https://doi.org/10.1111/ffe.13198.
- 48. Sapate S.G., RamaRao A.V. Effect of erodent particle hardness on velocity exponent in erosion of steels and cast irons. Materials and Manufacturing Processes 2003; 18: 783–802. https://doi.org/10.1081/AMP-120024975.
- 49. Duan C.G., Karelin V.Y. Abrasive erosion and corrosion of hydraulic machinery, 2002; 2. https://doi.org/10.1142/9781848160026.
- 50. Singh J., Nath S.K. Microstructural characterization and investigation of slurry erosion performance of cyclically heat treated martensite steel. Engineering Failure Analysis 2022; 131: 105833. https://doi.org/10.1016/j.engfailanal.2021.105833.
- 51. Skoczylas A., Zaleski K. Effect of regular shot peening and semi-random shot peening conditions on selected properties of the surface layer of gray cast iron. Advances in Science and Technology Research Journal 2024; 18: 284–95. https://doi.org/10.12913/22998624/184341.
- 52. Sheldon G.L., Finnie I. The mechanism of material removal in the erosive cutting of brittle materials. Journal of Manufacturing Science and Engineering, Transactions of the ASME 1966; 88: 393–9. https://doi.org/10.1115/1.3672667.
- 53. Wheeler D.W., Wood R.J.K. Solid particle erosion behaviour of CVD boron phosphide coatings. Surface and Coatings Technology 2006; 200: 4456–61. https://doi.org/10.1016/j.surfcoat.2005.03.011.
- 54. Shaw L.L. The surface deformation and mechanical behavior of nanostructured alloys. Woodhead Publishing Limited, 2011. https://doi.org/10.1533/9780857091123.3.481.
- 55. Siepak J. The influence of contact stress on the wear of a carburized steel case with a high content of retained austenite. Wear 1982, 80: 301–5. https://doi.org/10.1016/0043-1648(82)90258-7.
- 56. Maleki E., Unal O., Reza Kashyzadeh K., Bagherifard S., Guagliano M. A systematic study on the effects of shot peening on a mild carbon steel: Microstructure, mechanical properties, and axial fatigue strength of smooth and notched specimens. Applied Surface Science Advances 2021; 4. https://doi.org/10.1016/j.apsadv.2021.100071.
- 57. Nordin E, Alfredsson B. Experimental investigation of shot peening on case hardened SS2506 gear steel. Experimental Techniques 2017; 41: 433–51. https://doi.org/10.1007/s40799-017-0183-4.
- 58. Tekkalmaz M., Er Ü., Çakir F.H., Bozkurt F. A new approach to monitoring the operational success of shot peening with electromechanical impedance technique. International Journal of Advanced Manufacturing Technology 2021; 117: 3503–13. https://doi.org/10.1007/s00170-021-07933-3.
- 59. Wu D., Yao C., Zhang D. Surface characterization of Ti1023 alloy shot peened by cast steel and ceramic shot. Advances in Mechanical Engineering 2017; 9: 1–14. https://doi.org/10.1177/1687814017723287.
- 60. Lu J.-W., Sargent G.A., Conrad H. A study of the fundamental mechanisms of erosion using Hertzian fracture tests. Wear 1993; 162–164: 856–63. https://doi.org/10.1016/0043-648(93)90087-3.
- 61. Wheeler D.W., Wood R.J.K. The fracture of diamond coatings by high velocity sand erosion. Philosophical Magazine 2009; 89: 285–310.
- 62. Tillett J.P.A. Fracture of glass by spherical indenters. Proceedings of the Physical Society Section B 1956; 69: 47–54. https://doi.org/10.1088/0370-1301/69/1/306.
- 63. Feng Z. The Erosion of Materials. Cape Town, 1998.
- 64. Jonda E., Łatka L., Lont A., Gołombek K., Szala M. The effect of HVOF spray distance on solid particle erosion resistance of WC-based cermets bonded by Co, Co-Cr and Ni deposited on Mg-alloy substrate. Advances in Science and Technology Research Journal 2024; 18: 115–28. https://doi.org/10.12913/22998624/184025.
- 65. Majewski D., Hejwowski T., Łukasik D. The influence of microstructure of arc sprayed coatings on wear resistance. Advances in Science and Technology Research Journal 2018; 12: 285–92. https://doi.org/10.12913/22998624/86210.
- 66. Grewal H.S., Agrawal A., Singh H. Slurry erosion mechanism of hydroturbine steel: Effect of operating parameters. Tribology Letters 2013; 52: 287–303. https://doi.org/10.1007/s11249-013-0213-z.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09d5c73e-1093-4a39-b2ba-75f63e5e9195
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.