PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heat transfer modelling in an annular disc under heating and cooling processes with stress analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of this effort is to determine the interaction among the heating and cooling processes in order to understand how solids behave when subjected to temperature changes. In this instance, the temperature, displacement, and stress relations are determined analytically and numerically while a thin annular disc is subjected to both the heating and cooling processes. The ability of a material to withstand stress is essential for the design of diverse mechanical structures that aim to enhance performance, durability, characteristics, and strength. This ability is demonstrated in many physical processes where the material structure crosses over into heating and cooling processes. Furthermore, memory derivatives used in the modelling of heat transfer equations more accurately depict the memory behaviour of an imagined disc and explain its physical significance.
Rocznik
Strony
166--181
Opis fizyczny
Bibliogr. 40 poz., tab., wykr.
Twórcy
  • Department of Mathematics & Statistics, School of Applied Science & Humanities, VIGNAN'S Foundation for Science, Technology & Research, Guntur, A.P., INDIA
  • Department of Engineering, Sciences & Humanities, St. Vincent Pallotti College of Engineering and Technology Nagpur, Maharashtra, India
  • Department of Mathematics & Statistics, School of Applied Science & Humanities, VIGNAN'S Foundation for Science, Technology and Research, Guntur, A. P., INDIA
  • Department of Mathematics, Shri Lemdeo Patil Mahavidyalaya, Mandhal, INDIA
Bibliografia
  • [1] Khobragade N.L. and Deshmukh, K.C. (2005): Thermoelastic problem of a thin circular plate subject to a distributedheat supply.– J. Therm. Stress., vol.28, pp.171-184.
  • [2] Gaikwad K.R. (2013): Analysis of thermoelastic deformation of a thin hollow circular disk due to partially distributedheat supply.– J. Therm. Stress., vol.36, pp.207-224.
  • [3] Ishihara M., Tanigawa Y. and Kawamura R., Noda N. (1997): Theoretical analysis of thermoelastoplastic deformationof a circular plate due to a partially distributed heat supply.– J. Therm. Stress., vol.20, pp.203-225.
  • [4] Ootao Y., Tanigawa Y.and Murakami H. (1990): Transient thermal stress and deformation of a laminated compositebeam due to partially distributed heat supply.– J. Therm. Stress., vol.13, pp.193-206.
  • [5] Ootao Y. and Tanigawa Y. (1999): Three-dimensional transient thermal stresses of functionally graded rectangularplate due to partial heating.– J. Therm. Stress. vol.22, pp.35-55.
  • [6] Wang J.-L. and Li H.-F. (2011): Surpassing the fractional derivative: Concept of the memory-dependent derivative.–Comput. Math. Appl., vol.62, pp.1562-1567.
  • [7] Yu Y.-J., Hu W., Tian X.-G. (2014): A novel generalized thermoelasticity model based on memory-dependentderivative.– Int. J. Eng. Sci., vol.81, pp.123-134.
  • [8] Sur A., Kanoria M. (2018): Modeling of memory-dependent derivative in a fibre-reinforced plate.– Thin-WalledStruct., vol.126, pp.85-93.
  • [9] Al-Jamel A., Al-Jamal M.F. and El-Karamany, A. (2018): A memory-dependent derivative model for damping inoscillatory systems.– J. Vib. Control. vol.24, pp.2221-2229.
  • [10] Abouelregal A.E., Moustapha M.V., Nofal T.A., Rashid S., and Ahmad H. (2021): Generalized thermoelasticitybased on higher-order memory-dependent derivative with time delay.– Results Phys., vol.20, pp.103705.
  • [11] El-Karamany A.S. and Ezzat M.A. (2016): Thermoelastic diffusion with memory-dependent derivative.– J. Therm.Stress, vol.39, pp.1035-1050.
  • [12] Sarkar I. and Mukhopadhyay B. (2019): A domain of influence theorem for generalized thermoelasticity withmemory-dependent derivative.– J. Therm. Stress., vol.42, pp.1447-1457.
  • [13] Li Y. and He T. (2019): A generalized thermoelastic diffusion problem with memory-dependent derivative.– Math.Mech. Solids., vol.24, pp.1438-1462.
  • [14] Sarkar N., Ghosh D. and Lahiri A. (2019): A two-dimensional magneto-thermoelastic problem based on a new two-temperature generalized thermoelasticity model with memory-dependent derivative.– Mech. Adv. Mater. Struct.,vol. 26, pp.957-966.
  • [15] Lamba N.K. (2023): Impact of memory-dependent response of a thermoelastic thick solid cylinder.– J. Appl. Comput.Mech., vol.9, No.4, pp.1135-1143.
  • [16] Verma J., Lamba N.K. and Deshmukh K.C. (2022): Memory impact of hygrothermal effect in a hollow cylinder bytheory of uncoupled-coupled heat and moisture.– Multidiscip. Model. Mater. Struct., vol.18, No.5, pp.826-844.
  • [17] Yadav, A. K., Singh, A. and Jurczak, P. (2023): Memory dependent triple-phase-lag thermo-elasticity in thermo-diffusive medium.– International Journal of Applied Mechanics and Engineering, vol.28, No.4, pp.137-162.
  • [18] Lamba N.K. (2022): Thermosensitive response of a functionally graded cylinder with fractional order derivative.–International Journal of Applied Mechanics and Engineering, vol.27, No.1, pp.107-124.
  • [19] Thakare S., Warbhe M.S. and Kumar N. (2020): Time fractional heat transfer analysis in non-homogeneous thickhollow cylinder with internal heat generation and its thermal stresses.– International Journal of Thermodynamic,vol.23, No.4, pp.281-302.
  • [20] Lamba N.K. and Khobragade N.W. (2012): Integral transform methods for inverse problem of heat conduction with knownboundary of a thin rectangular object and its stresses.– Journal of Thermal Sciences, vol.21, No.5, pp.459-465.
  • [21] Kumar N. and Kamdi D.B. (2020): Thermal behavior of a finite hollow cylinder in context of fractionalthermoelasticity with convection boundary conditions.– Journal of Thermal Stresses, vol.43, No.9, pp.1189-1204.
  • [22] Lamba N.K., Verma J. and Deshmukh K.C. (2023): A brief note on space time fractional order thermoelasticresponse in a layer.– Appl. Appl. Math. Int. J. AAM, vol.18, No.1, pp.1-9.
  • [23] Yadav A.K., Carrera E., Schnack E. and Marin M. (2023): Effects of memory response and impedance barrier onreflection of plane waves in a nonlocal micropolar porous thermo-diffusive medium.– Mechanics of AdvancedMaterials and Structures, DOI: 10.1080/15376494.2023.2217556.
  • [24] Yadav A.K. and Schnack E. (2023): Plane wave reflection in a memory-dependent nonlocal magneto-thermoelasticelectrically conducting triclinic solid half-space.– J. Eng. Phys. Thermophy., vol.96, pp.1658-1673.
  • [25] Yadav A.K. (2024): Correction: Effect of impedance boundary on the reflection of plane waves in fraction-orderthermoelasticity in an initially stressed rotating half-space with a magnetic field.– Int. J. Thermophys., vol.45, article No.14.
  • [26] Yadav A.K. (2021): Reflection of plane waves from the impedance boundary of a magneto-thermo-micro stretchsolid with diffusion in a fractional order theory of thermoelasticity.– Waves in Random and ComplexMedia, DOI: 10.1080/17455030.2021.1909781.
  • [27] Yadav A.K. (2021): Thermoelastic waves in a fractional-order initially stressed micropolar diffusive porousmedium.– Journal of Ocean Engineering and Science, vol.6, No.4, pp.376-388.
  • [28] Yadav A.K. (2022): Reflection of plane waves in a fraction-order generalized magneto-thermoelasticity in a rotatingtriclinic solid half-space.– Mechanics of Advanced Materials and Structures, vol.29, No.25, pp.4273-4290.
  • [29] Ahmad H., Akgul A., Khan T.A., Stanimirovic P.S. and Chu Y.M. (2020): New perspective on the conventionalsolutions of the nonlinear time-fractional partial differential equations.– Complexity Hindawi, vol.2020, pp.1-10,Article ID 8829017.
  • [30] Ahmad H., Alam Md.N., Rahim Md.A., Alotaibi M.F. and Omri M. (2021): The unified technique for the nonlineartime-fractional model with the beta-derivative.– Results in Physics, vol.29, pp.104785.
  • [31] Ahmad H., Ozsahin D.U., Farooq U., Fahmy M.A., Albalwi M.D. and Abu-Zinadah H. (2023): Comparative analysisof new approximate analytical method and Mohand variational transform method for the solution of wave-likeequations with variable coefficients.– Results in Physics, vol.51, pp.106623.
  • [32] Lamba N.K. and Deshmukh K.C. (2020): Hygrothermoelastic response of a finite solid circular cylinder.–Multidiscipline Modeling in Materials and Structures, vol.16, No.1, pp.37-52.
  • [33] Lamba N.K. and Deshmukh K.C. (2022): Hygrothermoelastic response of a finite hollow circular cylinder.– Wavesin Random and Complex Media, DOI: 10.1080/17455030.2022.2030501.
  • [34] Kamdi D.B. and Lamba N.K. (2016): Thermoelastic analysis of functionally graded hollow cylinder subjected touniform temperature field.– Journal of Applied and Computational Mechanics, vol.2, No.2, pp.118-127.
  • [35] Lamba N.K. and Khobragade N.W. (2012): Uncoupled thermoelastic analysis for a thick cylinder with radiation.–Theor. Appl. Mech. Lett. 2, pp.021005.
  • [36] Nowacki W. (1957): The state of stresses in a thick circular plate due to temperature field.– Bull. Acad. Polon. Sci.,Scr. Scl. Tech., vol.5, pp.227.
  • [37] Marchi E. and Fasulo A. (1967): Heat conduction in sector of a hollow cylinder with radiations.– Atti. Della Acc.Sci. di. Torino, vol.1, pp.373-382.
  • [38] Hetnarski R.B. (2014): Laplace Transforms of Specific Exponential Form Encountered in Thermoelasticity, in R. B.Hetnarski (Ed.).– Encyclopedia of Thermal Stresses, Springer Dordrecht, Heidelberg, New York, London, vol.6,pp.2673.
  • [39] Noda N. (2003): Thermal Stresses (2nd ed.).– Routledge. https://doi.org/10.1201/9780203735831.
  • [40] Sheikh S., Khalsa L. and Varghese V. (2024): The impact of memory effect in the higher-order time-fractionalderivative for hygrothermoelastic cylinder.–Multidiscipline Modeling in Materials andStructures. https://doi.org/10.1108/MMMS-02-2024-0053.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09d57073-0e50-4e31-83f7-99a19566a60d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.