PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New simple statistical formulas for estimating surface concentrations of suspended particulate matter (SPM) and particulate organic carbon (POC) from remote- sensing reflectance in the southern Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a step taken towards improving the new system for the satellite monitoring of the Baltic Sea environment, officially started in Poland recently (SatBałtyk System, see http://www. satbaltyk.pl), a new set of simple statistical formulas was derived. These combine the empirically determined spectral values of remote-sensing reflectance Rrs(λ) with the mass concentrations of suspended particulate matter (SPM) and particulate organic carbon (POC) in southern Baltic surface waters. The new formulas are based on 73 empirical data sets gathered during 4 research cruises on board r/v Oceania during spring and late summer in the open waters of the southern Baltic and coastal regions of the Gulf of Gdańsk. Correlations of SPM and POC concentrations with reflectance or reflectance ratios in various spectral bands were tested. Several variants of candidate statistical relationships, which can be used later in the construction of simple local remote sensing algorithms for the waters in question, are introduced here. These relationships utilise either absolute values of Rrs at a selected waveband, mostly from the yellow, red or near infrared part of the light spectrum, or Rrs ratios for two different wavebands, mostly ratios of blue to yellow, blue to red and blue to infrared or green to yellow and green to red spectral band. From the numerous simple approximate relationships established, the following two, characterised by large correlation coefficients r2 and small standard error factors X, may serve as examples: SPM [g m-3] = 1480(Rrs(710))0.902 (with the factors r2 = 0.86; X = 1.26) (the unit of Rrs(λ) is [sr-1]) and POC [g m-3] = 0.814(Rrs(555)/Rrs(589))-4.42 (r2 = 0.75; X = 1.37). From the practical standpoint, taking into consideration light wavelengths that are close to or concurrent with the currently available spectral bands used in satellite observations of the Baltic Sea, another two formulas (using the same spectral ratio) are worth pointing out: SPM [g m-3] = 2.6(Rrs(490)/Rrs(625))-1.29 (r2 = 0.86; X = 1.25) and POC [g m-3] = 0.774(Rrs(490)/Rrs(625))-1.18 (r2 = 0.66; X = 1.44). The paper also presents a number of intermediate statistical relationships between SPM and POC concentrations, Rrs spectra and light backscattering coefficients in order to illustrate the simplified physical justification for some of the observed direct statistical relationships, presented as the main content of this work.
Czasopismo
Rocznik
Strony
161--175
Opis fizyczny
Bibliogr. 38 poz., tab., wykr., mapy
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Institute of Oceanography, University of Gdańsk, Gdynia, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • [1] Ahn, Y.-H., Moon, J.-E., Gallegos, S., 2001. Development of suspended particulate matter algorithms for ocean color remote sensing. Korean J. Remote Sens. 17 (4), 285—295.
  • [2] Arst, H., 2003. Optical Properties and Remote Sensing of Multicomponental Water Bodies. Springer-Verlag, Berlin, Heidelberg, New York, 234 pp.
  • [3] Beltran-Abaunza, J.M., Kratzer, S., Brockmann, C., 2014. Evaluation of MERIS products from Baltic Sea coastal waters rich in CDOM. Ocean Sci. 10, 377—396, http://dx.doi.org/10.5194/os-10-377- 2014.
  • [4] Berthon, J.-F., Melin, F., Zibordi, G., 2008. Ocean colour remote sensing of the optically complex European Seas. In: Barale, V., Gade M., M. (Eds.), Remote Sensing of the European Seas. Springer, Berlin, 35—52.
  • [5] Berthon, J.-F., Zibordi, G., Van Der Linde, D., Canuti, E., Eker-Develi, E., 2006. Regional Bio-optical Relationships and Algorithms for the Adriatic Sea, the Baltic Sea and the English Channel/North Sea Suitable for Ocean Colour Sensors. European Commission, Directorate-General Joint Research Centre, EUR 22188 EN, 43 pp.
  • [6] Dana, D. R., Maffione, R. A., 2002. Determining the backward scattering coefficient with fixed-angle backscattering sensors — revisited. In: Ocean Optics XVI Conference. Santa Fe, New Mexico, USA 9 pp.
  • [7] Darecki, M., Ficek, D., Krężel, A., Ostrowska, M., Majchrowski, R., Woźniak, S. B., Bradtke, K., Dera, J., Woźniak, B., 2008. Algorithm for the remote sensing of the Baltic ecosystem (DESAM-BEM), Part 2: Empirical validation. Oceanologia 50 (4), 509—538.
  • [8] Darecki, M., Stramski, D., 2004. An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sens. Environ. 89 (3), 326—350, http://dx.doi.org/10.1016/j.rse.2003.10.012.
  • [9] Dera, J., Woźniak, B., 2010. Solar radiation in the Baltic Sea. Oceanologia 52 (4), 533—582, http://dx.doi.org/10.5697/ oc.52-4.533.
  • [10] Doerffer, R., Schiller, H., 2006. The MERIS neural network algorithm. In: Lee, Z.P. (Ed.), Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications. IOCCG Report Series, No. 5. International Ocean Colour Coordinating Group, Dartmouth, Canada (Chapter 6), 126 pp.
  • [11] D'Alimonte, D., Zibordi, G., Kajiyama, T., Berthon, J.-F., 2014. Comparison between MERIS and regional high-level products in European seas. Remote Sens. Environ. 140, 378—395, http://dx. doi.org/10.1016/j.rse.2013.07.029.
  • [12] Ferrari, G. M., Bo, F. G., Babin, M., 2003. Geo-chemical and optical characterizations of suspended matter in European coastal waters. Estuar. Coast. Shelf Sci. 57, 17—24, http://dx.doi.org/ 10.1016/S0272-7714(02)00314-1.
  • [13] Gordon, H. R., Brown, O. B., Evans, R. H., Brown, J. W., Smith, R. C., Baker, K. S., Clark, D. K., 1988. A semianalytic radiance model of ocean colour. J. Geophys. Res. 93, 10909—10924, http://dx.doi. org/10.1029/JD093iD09p10909.
  • [14] Gordon, H. R., Ding, K., 1992. Self-shading of in-water instruments. Limnol. Oceanogr. 37 (3), 491—500, http://dx.doi.org/10.4319/ lo.1992.37.3.0491.
  • [15] HOBI Labs (Hydro-Optics, Biology, and Instrument. Lab. Inc.), 2008. HydroScat-4 Spectral Backscattering Sensor, User's Manual, Rev. 4, June 15 2008, 65 pp.
  • [16] IOCCG, 2015. Ocean colour remote sensing in polar seas. In: Babin, M., Arrigo, K., Bélanger, S., Forget, M.-H. (Eds.), IOCCG Report Series, No. 16. International Ocean Colour Coordinating Group, Dartmouth, Canada, 130 pp.
  • [17] Kowalczuk, P., 1999. Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea. J. Geophys. Res. 104 (12), 30047—30058, http://dx.doi.org/10.1029/1999JC900198.
  • [18] Kratzer, S., Ebert, K., Sørensen, K., 2011. Monitoring the bio-optical state of the Baltic Sea ecosystem with remote sensing and autonomous in situ techniques. In: Harff, J., Björck, S., Hoth, P. (Eds.), The Baltic Sea Basin. Central and Eastern European Development Studies (CEEDES). Springer, Heidelberg, 407—435, (Chapter 20).
  • [19] Lee, P., Carder, L., Peacock, T. G., Davis, C. O., Mueller, J. L., 1996. Method to derive ocean absorption coefficients from remote-sensing reflectance. Appl. Opt. 35 (3), 453—462, http://dx.doi. org/10.1364/AO.35.000453.
  • [20] Maciejewska, A., Pempkowiak, J., 2014. DOC and POC in the southern Baltic. Part I. Evaluation of factors influencing sources distribution and dynamics of organic matter. Oceanologia 56 (3), 523— 548, http://dx.doi.org/10.5697/oc.56-3.523.
  • [21] Maciejewska, A., Pempkowiak, J., 2015. DOC and POC in the southern Baltic Sea. Part II. Evaluation of factors affecting organic matter concentrations using multivariate statistical methods. Oceanologia 57 (2), 168—176, http://dx.doi.org/10.1016/j. oceano.2014.11.003.
  • [22] Maffione, R. A., Dana, D. R., 1997. Instruments and methods for measuring the backward-scattering coefficient of ocean waters. Appl. Opt. 36 (24), 6057—6067, http://dx.doi.org/10.1364/ AO.36.006057.
  • [23] Mobley, C. D., 1994. Light and Water; Radiative Transfer in Natural Waters. Academic Press, San Diego, 592 pp.
  • [24] Morel, A., 1974. Optical properties of pure water and pure sea water. In: Jerlov, N. G., Steemann Nielsen, E. (Eds.), Optical Aspects of Oceanography. Academic Press, London, 1—24.
  • [25] Morel, A., Prieur, L., 1977. Analysis of variations in ocean color. Limnol. Oceanogr. 22, 709—722, http://dx.doi.org/10.4319/ lo.1977.22.4.0709.
  • [26] Siegel, H., Gerth, M., 2008. Optical remote sensing applications in the Baltic Sea. In: Barale, V., Gade M., M. (Eds.), Remote Sensing of the European Seas. Springer, Berlin, 91—102.
  • [27] Siegel, H., Gerth, M., Beckert, M., 1994. The variation of optical properties in the Baltic Sea and algorithms for the application of remote sensing data. Ocean Optics XII. Proc. SPIE Int. Soc. Opt. Eng. 2258, 894—905.
  • [28] Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis, M. R., Röttgers, R., Sciandra, A., Stramska, M., Twardowski, M. S., Franz, B. A., Claustre, H., 2008. Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences 5 (1), 171—201, http://dx.doi.org/ 10.5194/bg-5-171-2008.
  • [29] Voipio, A. (Ed.), 1981. The Baltic Sea. Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 418 pp.
  • [30] Woźniak, B., Bradtke, K., Darecki, M., Dera, J., Dudzińska-Nowak, J., Dzierzbicka-Głowacka, L., Ficek, D., Furmańczyk, K., Kowalewski, M., Krężel, A., Majchrowski, R., Ostrowska, M., Paszkuta, M., Stoń-Egiert, J., Stramska, M., Zapadka, T., 2011a. SatBaltic — a Baltic environmental satellite remote sensing system — an ongoing Project in Poland. Part 1: Assumptions, scope and operating range. Oceanologia 53 (4), 897—924, http://dx.doi.org/ 10.5697/oc.53-4.897.
  • [31] Woźniak, B., Bradtke, K., Darecki, M., Dera, J., Dudzińska-Nowak, J., Dzierzbicka-Głowacka, L., Ficek, D., Furmańczyk, K., Kowalewski, M., Krężel, A., Majchrowski, R., Ostrowska, M., Paszkuta, M., Stoń-Egiert, J., Stramska, M., Zapadka, T., 2011b. SatBaltic — a Baltic environmental satellite remote sensing system — an ongoing Project in Poland. Part 2: Practical applicability and preliminary results. Oceanologia 53 (4), 925—958, http://dx. doi.org/10.5697/oc.53-4.925.
  • [32] Woźniak, B., Krężel, A., Darecki, M., Woźniak, S. B., Majchrowski, R., Ostrowska, M., Kozłowski, Ł., Ficek, D., Olszewski, J., Dera, J., 2008. Algorithm for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 1: Mathematical apparatus. Oceanologia 50 (4), 451—508.
  • [33] Woźniak, M., Bradtke, K. M., Krężel, A., 2014. Comparison of satellite chlorophyll a algorithms for the Baltic Sea. J. Appl. Remote Sens. 8 (1), 083605, http://dx.doi.org/10.1117/1. JRS.8.083605.
  • [34] Woźniak, S. B., 2014. Simple statistical formulas for estimating biogeochemical properties of suspended particulate matter in the southern Baltic Sea potentially useful for optical remote sensing applications. Oceanologia 56 (1), 7—39, http://dx.doi.org/ 10.5697/oc.56-1.007.
  • [35] Woźniak, S. B., Meler, J., Lednicka, B., Zdun, A., Stoń-Egiert, J., 2011. Inherent optical properties of suspended particulate matter in the southern Baltic Sea. Oceanologia 53 (3), 691— 729, http://dx.doi.org/10.5697/oc.53-3.691.
  • [36] Woźniak, S. B., Sagan, S., Stoń-Egiert, J., Burska, D., Zabłocka, M., 2014. Light backscattering and scattering by marine particles in relation to particle concentration, composition and size distribution in the southern Baltic Sea. In: Ocean Optics XXII Conference. Portland, Maine, USA 12 pp.
  • [37] Woźniak, S. B., Stramski, D., Stramska, M., Reynolds, R. A., Wright, V. M., Miksic, E. Y., Cichocka, M., Cieplak, A. M., 2010. Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California. J. Geophys. Res. Oceans 115, C08027, http://dx.doi.org/10.1029/2009JC005554.
  • [38] Zibordi, G., Ferrari, G. M., 1995. Instrument self-shading in under-water optical measurements: experimental data. Appl. Opt. 34 (2), 2750—2754, http://dx.doi.org/10.1364/AO.34.002750.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09d03961-cdfe-4ec4-ac02-9475aab2dd13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.