PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monitoring of contamination of coal processing plants and environmental waters using bubble velocity measurements – advantages and limitations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents fundamentals of a simple physicochemical method (SPMD) and analysis of results obtained when the method was applied for detection of organic contaminations (surface-active substances SAS) in samples of environmental and industrial waters. The method is based on measurements of variations of air bubble local velocities, which can be significantly changed in presence of surface-active contaminants. Lowering of the bubble velocity is a consequence of a motion induced dynamic adsorption layer (DAL) formed over surface of the rising bubble. The DAL formation retards the surface fluidity and the bubble rising velocity can be lowered by over 50% when the bubble surface is completely immobilized. We showed that the SPMD is a very sensitive tool (detection limit even below 1 ppm) for detection of various kinds of surface-active substances (ionic, non-ionic) in water samples. On the basis of results obtained using precise laboratory set-up, an accuracy of the SPMD is discussed. Moreover, effect of inert electrolyte addition on the bubble velocity lowering and value of detection limit of the SPMD is discussed. Simple approach, enabling quantitative analysis of the surface-active contaminants in samples collected, based on “equivalent concentrations” determination, is proposed. Results obtained for industrial (Jankowice and Knurow coal processing plants, Jaslo Refinery channel) and environmental waters (Wisloka and Ropa river) are used for detailed analysis and critical discussion of advantages and limitations of the SPMD.
Rocznik
Strony
143--157
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Krakow
autor
  • AGH University of Science and Technology, Dept. Environmental Engineering & Mineral Processing, Krakow
autor
  • Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Krakow
autor
  • Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Krakow
Bibliografia
  • 1. ADAMCZYK Z., PARA G., WARSZYNSKI, P., 1999, Influence of ionic strength on surface tension of cetyltrimethylammonium bromid, Langmuir 15, 8383–8387.
  • 2. ADAMCZYK Z., PARA G., WARSZYNSKI P., 1999, Surface tension of sodium dodecyl sulphate in the presence of a simple electrolyte, Bull. Pol. Ac. Sci. 47, 175–186.
  • 3. BEL FDHILA R., DUINVELD P.C., 1996, The effect of surfactant on the rise of spherical bubble at high Reynolds and Peclet numbers, Phys. Fluids A 8, 310–321.
  • 4. CLIFT R., GRACE J.R. and WEBER M.E., 1978, Bubbles, drops and particles, Academic Press, New York, San Francisco, London.
  • 5. DUKHIN S.S., KRETZSCHMAR G., MILLER R., 1995, Dynamics of adsorption at liquid interfaces. Theory, Experiments, Application, Elsevies, Amsterdam-Laussane-New York- Oxford-Shannon
  • 6. DUKHIN S.S., MILLER R., LOGLIO G., 1998, Physicochemical hydrodynamics of rising bubble, in: Studies in Interface Science, Elsevier, 367–432.
  • 7. JAREK E., JASINSKI T., BARZYK W., WARSZYNSKI P., 2010, The pH regulated surface activity of alkanoic acids, Colloids Surf. A. 354, 188–196.
  • 8. LEVICH V.G., 1962, Physicochemical hydrodynamics, Prentice-Hall, Inc., Engelwood Clift, N.J.
  • 9. LIAO Y., MCLAUGHIN J.B., 2000, Bubble motion in aqueous surfactant solutions, J. Colloid Interf. Sci. 224, 297–310.
  • 10. KALININ V.V., RADKE C.J., 1996, A ion-binding model for ionic surfactant adsorption at aqueousfluid interfaces, Coll. Surf. A. 114, 337–350.
  • 11. KRZAN M., MALYSA K., 2002, Profiles of local velocities of bubbles in n-butanol, n-hexanol and nnonanol solutions, Colloids and Surfaces A: 207, 279–291.
  • 12. KRZAN M., MALYSA K., 2002, Influence of frother concentration on bubble dimension and Rusing velocities, Physicochemical Problem of Mineral Processing 36, 65–76.
  • 13. KRZAN M., MALYSA K., 2009, Influence of solution pH and electrolyte presence on bubble velocity In anionic surfactant solutions, Physicochemical Problems of Mineral Processing 43, 43-58.
  • 14. KRZAN M., MALYSA K., 2012, Influence of electrolyte presence on bubble velocity in solutions of sodium n-alkilsulfates (C8, C10 and C12), Physicochemical Problems of Mineral Processing, 48, 49–62.
  • 15. KRZAN M., LUNKENHEIMER K., MALYSA K., 2004, On the influence of the surfactant's polar group on the local and terminal velocities of bubbles, Colloids and Surfaces A: 250, 431–441.
  • 16. KRZAN M., ZAWALA J., MALYSA K., 2007, Development of steady state adsorption distribution over interface of a bubble rising in solutions of n-alkanols (C5, C8) and n-alcyltrimethylammonium bromides (C8, C12, C16), Colloid & Surfaces A: 298, 42–51.
  • 17. LOGLIO G., DEGLI INNOCENTI N., TESEI U., CINI R., WAND Q.-S., 1989, Il Nuovo Cimento Della Socieraie Italiana di Fisica C. 12, 289.
  • 18. MALYSA E., IWANSKA A., HANC A., MALYSA K., 2009, Metoda monitorowania stężenia odczynników flotacyjnych w wodach obiegowych zakładów przeróbczych węgla przez pomiar prędkości pęcherzyków powietrza, Gospod. Surowcami Mineralnymi, 25 (3) 109–120.
  • 19. MALYSA K., KRASOWSKA M., KRZAN M., 2005, Influence of surface active substances on buble motion and collision with various interfaces, Adv. Colloid Interface Sci. 114–115C: 205–225.
  • 20. MALYSA K., ZAWALA J., KRZAN M., KRASOWSKA M., 2011, Bubbles Rising in Solutions; Local and Terminal Velocities, Shape Variations and Collisions with Free Surface, in: R. Miller, L. Liggieri (Eds.) Bubble and Drops Interfaces, 243–292.
  • 21. PARA, G., JAREK, E., WARSZYNSKI, P., 2005, The surface tension of aqueous solution of cetyltrimethylammonium cationic surfactants in presence of bromide and chloride counterions, Colloids Surf. A. 261, 65–73.
  • 22. SAM A., GOMEZ C.O., FINCH J.A., 1996, Axial velocity profiles of single bubbles in water/frother solutions, Int. J. Miner. Process. 47, 177–196.
  • 23. WARSZYNSKI, P., BARZYK, W., LUNKENHEIMER, K., FRUHNER, H., 1998a. Surface tension and surface potential of Na n-dodecylsulfate at the air solution interface: Model and experiment, J. Phys. Chem. B 102, 10948–10957.
  • 24. WARSZYNSKI, P., LUNKENHEIMER, K., CICHOCKI, G., 2002, Effect of counterions on the adsorption of ionic surfactants at fluid−fluid interfaces, Langmuir 18, 2506–2514.
  • 25. YBERT C. and DI MEGLIO J.-M., 1998, Ascending air bubbles in protein solutions, Eur. Phys. J. B 4, 313-319.
  • 26. YBERT C. and DI MEGLIO J.-M., 2000, Ascending air bubbles in solutions of surface active molecules: influence of desorption kinetics, Eur. Phys. J. E 3, 143-148.
  • 27. ZAWALA J., SWIECH K., MALYSA K., 2007, A simple physicochemical method for detection of organic contaminations in water, Colloids & Surfaces A, 302, 293.
  • 28. ZHANG Y., FINCH J.A., 1996, Terminal velocity of bubbles: approach and preliminary investigation, Column 96, 63–69.
  • 29. ZHANG Y., FINCH J.A., 2001, A note on single bubble motion in surfactant solution, J. Fluid Mech. 429, 63-66.
  • 30. ZHANG Y., MCLAUGHIN J.B., FINCH J.A., 2001, Bubble velocity profile and model of surfaktant mass transfer to bubble surface, Chem. Eng. Sci. 56, 6605–6616.
  • 31. ZHOLKOVSKIJ E.K., KOVALCHUK V.I, DUKHIN S.S., MILLER R., Dynamics of Rear Stagnant Cap Formation at Low Reynolds Numbers: 1. Slow Sorption Kinetics, J. Coll. Interf. Sci., 226 (2000), 51–59
  • 32. ZYCHOWSKA P., Monitorowanie stanu czystości wód poprzez pomiary prędkości pęcherzyków gazowych, M.Sc. Thesis (in Polish), Jagiellonian University, Krakow, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09c1bb45-3c4d-4c61-baf7-90a42c83261c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.