Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the results of studies on the preparation of cellulosic membranes, from a solution in 1-ethyl-3- methylimidazolium acetate (EMIMAc), using the phase inversion method. Initially, the membranes were obtained by coagulation of the polymer film in water and primary alcohols (methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol), 1-hexanol, 1-octanol) resulting in membranes with significantly differing morphologies. Subsequently, composite membranes were produced, with the support layer being a membrane with the largest pores, and the skin layer a membrane with smaller pores. The resulting membranes were tested for physicochemical and transport properties. The morphology of the membrane surfaces and their cross-sections were investigated by using a scanning electron microscope (SEM). The structure of the membranes, on the other hand, was investigated by FTIR spectroscopy and WAXS structural analysis.
Czasopismo
Rocznik
Tom
Strony
232--242
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
autor
- University of Bielsko-Biala, Faculty of Materials, Civil and Environmental Engineering, Institute of Textile Engineering and Polymer Materials, Willowa 2, 43-309 Bielsko-Biala, Poland, tel. +48 338279114; fax: +48 338279100
autor
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Institute of Water and Wastewater Engineering, Konarskiego 18, 44-100 Gliwice, Poland
autor
- University of Bielsko-Biala, Faculty of Materials, Civil and Environmental Engineering, Institute of Textile Engineering and Polymer Materials, Willowa 2, 43-309 Bielsko-Biala, Poland, tel. +48 338279114; fax: +48 338279100
autor
- University of Bielsko-Biala, Faculty of Materials, Civil and Environmental Engineering, Institute of Textile Engineering and Polymer Materials, Willowa 2, 43-309 Bielsko-Biala, Poland, tel. +48 338279114; fax: +48 338279100
autor
- University of Bielsko-Biala, Faculty of Materials, Civil and Environmental Engineering, Institute of Textile Engineering and Polymer Materials, Willowa 2, 43-309 Bielsko-Biala, Poland, tel. +48 338279114; fax: +48 338279100
autor
- University of Bielsko-Biala, Faculty of Materials, Civil and Environmental Engineering, Institute of Textile Engineering and Polymer Materials, Willowa 2, 43-309 Bielsko-Biala, Poland, tel. +48 338279114; fax: +48 338279100
autor
- University of Bielsko-Biala, Faculty of Materials, Civil and Environmental Engineering, Institute of Textile Engineering and Polymer Materials, Willowa 2, 43-309 Bielsko-Biala, Poland, tel. +48 338279114; fax: +48 338279100
Bibliografia
- [1] Klemm, D., Heublein, B., Fink, H.P., Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie - Inernational Edition, 44, 3358–3393.
- [2] Fink, H.P., Weigel, P., Purz, H.J., Ganster, J. (2001). Structure formation of regenerated cellulose materials from NMMO-solutions. Progres in Polymer Science, 26, 1473–1524.
- [3] Edgar, K.J., Buchanan, C.M., Debenham, J.S., Rundquist, P.A., Seiler, B.D., Shelton, M.C., Tindall, D. (2001). Advances in cellulose ester performance and application. Progres in Polymer Science, 26, 1605–1688.
- [4] Jin, H., Zha, C., Gu, L. (2007). Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydrate Research, 342, 851–858.
- [5] Cao, Y., Zhang, R., Cheng, T., Guo, J., Xian, M., Liu, H. (2017). Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives. Applied Microbiology and Biotechnology, 101, 521–532.
- [6] Singh, P., Duarte, H., Alves, L., Antures, F., Le Moigne, N., Dormanns, J., Duchemin, B., Staiger, M. P. (2015., Cellulose - Fundamental Aspects and Current Trends. Cellulose - Fundamental Aspects and Current Trends, 237-261.
- [7] Pinkert, A., Marsh, K.N., Pang, S., Staiger, M.P. (2009). Ionic liquids and their interaction with cellulose. Chemical Reviews, 109, 6712–6728.
- [8] Fukaya, Y., Hayashi, K., Wada, M., Ohno, H. (2008). Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chemistry, 10(1), 44-46.
- [9] Laus, G., Bentivoglio, G., Schottenberger, H., Kahlenberg, V., Kopacka, H., Roeder, T., Sixta, H. (2005). Ionic Liquids: Current Dev Elopments, Potential and Drawbacks for Industr Ial Applications. Lenzinger Berichte, 84, 71–85.
- [10] Hermanutz, F., Gähr, F., Uerdingen, E., Meister, F., Kosan, B. (2008). New developments in dissolving and processing of cellulose in ionic liquids, Macromolecular Symposia, 262, 23–27.
- [11] Cao, Y., Wu, J., Zhang, J., Li, H., Zhang, Y., He, J. (2009). Room temperature ionic liquids (RTILs): A new and versatile platform for cellulose processing and derivatization. Chemical Engineering.Journal, 147, 13–21.
- [12] Spörl, J.M., Ota, A., Son, S., Massonne, K., Hermanutz, F., Buchmeiser, M.R. (2016). Carbon fibers prepared from ionic liquid-derived cellulose precursors. Materials Today Commuications, 7, 1–10.
- [13] Sundberg, J., Guccini, V., Håkansson, K.M.O., Salazar-Alvarez, G., Toriz, G., Gatenholm, P. (2015). Controlled molecular reorientation enables strong cellulose fibers regenerated from ionic liquid solutions. Polymer (United Kingdom), 75, 119–124.
- [14] Sun, L., Chen, J.Y., Jiang, W., Lynch, V. (2015). Crystalline characteristics of cellulose fiber and film regenerated from ionic liquid solution. Carbohydate Polymers, 118, 150–155.
- [15] Bulota, M., Michud, A., Hummel, M., Hughes, M., Sixta, H. (2016). The effect of hydration on the micromechanics of regenerated cellulose fibres from ionic liquid solutions of varying draw ratios. Carbohydrate Polymers, 151, 1110-1114.
- [16] Xu, J., Hou, H., Liu, B., Hu, J. (2017). The integration of different pretreatments and ionic liquid processing of eucalyptus: Hemicellulosic products and regenerated cellulose fibers. Industrial Crops and Products, 101, 11–20.
- [17] Kosan, B., Michels, C., Meister, F. (2008). Dissolution and forming of cellulose with ionic liquids. Cellulose.,15, 59–66.
- [18] Michud, A., Hummel, M., Sixta, H. (2015). Influence of molar mass distribution on the final properties of fibers regenerated from cellulose dissolved in ionic liquid by dryjet wet spinning. Polymer (United Kingdom), 75, 1–9.
- [19] Wanasekara, N.D., Michud, A., Zhu, C., Rahatekar, S., Sixta H., Eichhorn S.J. (2016). Deformation mechanisms in ionic liquid spun cellulose fibers. Polymer (United Kingdom), 99, 222–230.
- [20] Suzuki, T., Kono, K., Shimomura, K., Minami, H. (2014). Preparation of cellulose particles using an ionic liquid. Journal of Colloid and Interface Science, 418, 126–131.
- [21] Kimura, A., Nagasawa, N., Taguchi, M. (2014). Cellulose gels produced in room temperature ionic liquids by ionizing radiation. Radiation Physics and Chemistry, 103, 216–221.
- [22] Oshima, T., Sakamoto, T., Ohe, K., Baba, Y. (2014). Cellulose aerogel regenerated from ionic liquid solution for immobilized metal affinity adsorption. Carbohydrate Polymers, 103, 62–69.
- [23] Liao, H., Zhang, H., Hong, H., Li, Z., Qin, G., Zhu, H., Lin, Y. (2016). Novel cellulose aerogel coated on polypropylene separators as gel polymer electrolyte with high ionic conductivity for lithium-ion batteries. Journal of Membran Science, 514, 332–339.
- [24] Östlund, Å., Idström, A., Olsson, C., Larsson, P.T., Nordstierna, L. (2013). Modification of crystallinity and pore size distribution in coagulated cellulose films. Cellulose, 20, 1657–1667.
- [25] Ding, Z.D., Chi, Z., Gu, W.X., Gu, S.M., Liu, J.H., Wang, H.J. (2012). Theoretical and experimental investigation on dissolution and regeneration of cellulose in ionic liquid. Carbohydrate Polymers, 89, 7–16.
- [26] Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D. (2002). Dissolution of cellulose with ionic liquids. Journal of American Chemical Society, 124, 4974-4975.
- [27] Wendler, F., Todi, L.N., Meister, F. (2012). Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochimica Acta, 528, 76–84.
- [28] Mahadeva, S.K., Kim, J. (2012). Influence of residual ionic liquid on the thermal stability and electromechanical behavior of cellulose regenerated from 1-ethyl-3-methylimidazolium acetate. Fibers and Polymers, 13(3), 289-294.
- [29] Sun, N., Rahman, M., Qin, Y., Maxim, M.L., Rodríguez, H., Rogers, R.D. (2009). Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chemistry, 11, 646.
- [30] Livazovic, S., Li, Z., Behzad, A.R., Peinemann, K.-V., Nunes, S.P. (2015). Cellulose multilayer membranes manufacture with ionic liquid. Journal of. Membran Science, 490, 282–293.
- [31] Li, X.L., Zhu, L.P., Zhu, B.K., Xu, Y.Y. (2011). High-flux and anti-fouling cellulose nanofiltration membranes prepared via phase inversion with ionic liquid as solvent. Separation and Purification Technology, 83, 66-73.
- [32] Turner, M.B., Spear, S.K., Holbrey, J.D., Daly, D.T., Rogers, R.D. (2005). Ionic liquid-reconstituted cellulose composites as solid support matrices for biocatalyst immobilization. Biomacromolecules, 6, 2497–2502.
- [33] Gupta, K.M., Hu, Z., Jiang, J. (2011). Mechanistic understanding of interactions between cellulose and ionic liquids: A molecular simulation study. Polymer (Guildf), 52. 5904–5911.
- [34] Feng, L., lan Chen, Z. (2008). Research progress on dissolution and functional modification of cellulose in ionic liquids. Journal of Molecular Liquids, 142, 1–5.
- [35] Tan, H.T., Lee, K.T., Mohamed, A.R. (2011). Pretreatment of lignocellulosic palm biomass using a solvent-ionic liquid [BMIM]Cl for glucose recovery: An optimisation study using response surface methodology. Carbohydrate Polymers, 83, 1862–1868.
- [36] Xiao, W., Yin, W., Xia, S., Ma, P. (2012). The study of factors affecting the enzymatic hydrolysis of cellulose after ionic liquid pretreatment. Carbohydrate Polymers, 87, 2019–2023.
- [37] Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V., Zangeneh, H. (2014). Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. Journal of Membran Science, 453, 292–301.
- [38] Wypych, G. (2012). Handbook of Polymers (2nd edition). ChemTec Publishing (Ontario, Canada).
- [39] Marrinan H.J., Mann J. (1956). Infrared spectra of the crystalline modifications of cellulose. Journal of Polym. Science, 21, 301–311.
- [40] Jung H.Z., Benerito R.R., Berni R.J., Mitcham D. (1977). Effect of low temperatures on polymorphic structures of cotton cellulose. Journal of Applied Polymer Science, 21, 1981–1988.
- [41] Akira, I. (2001). Material Science of Cellulose. Tokyo University Press (Tokyo).
- [42] Rabiej, M. (2017). Application of the particle swarm optimizationmethod for the analysis of wide-angle X-raydiffraction curves of semicrystalline polymers. Journal of Applied Crystallography, 50, 221-230.
- [43] Ślusarczyk, C., Fryczkowska, B., Sieradzka, M., Janicki, J. (2016). Small-angle X-ray scattering studies of pore structure in cellulose membranes. Acta Physica Polonica A, 229–232.
- [44] Zhang, H., Wu, J., Zhang, J., He, J. (2005). 1-allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose. Macromolecules, 38, 8272-8277.
- [45] Xu, A., Guo, X., Xu, R. (2015). Understanding the dissolution of cellulose in 1-butyl-3-methylimidazolium acetate+DMAc solvent. International Journal of Biological Macromolecules, 81, 1000-1004.
- [46] Mahadeva, S.K., Kim, J. (2012). Influence of residual ionic liquid on the thermal stability and electromechanical behavior of cellulose regenerated from 1-ethyl-3-methylimidazolium acetate. Fibers and Polymers, 13, 289-294.
- [47] Çifci, C., Kaya, A. (2010). Preparation of poly(vinyl alcohol)/cellulose composite membranes for metal removal from aqueous solutions. Desalination, 253, 175-179.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09c085cd-f6ac-4c13-904f-ec121e5d4f0b