PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties and Structure of Cellulosic Membranes Obtained from Solutions in Ionic Liquids Coagulated in Primary Alcohols

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of studies on the preparation of cellulosic membranes, from a solution in 1-ethyl-3- methylimidazolium acetate (EMIMAc), using the phase inversion method. Initially, the membranes were obtained by coagulation of the polymer film in water and primary alcohols (methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol), 1-hexanol, 1-octanol) resulting in membranes with significantly differing morphologies. Subsequently, composite membranes were produced, with the support layer being a membrane with the largest pores, and the skin layer a membrane with smaller pores. The resulting membranes were tested for physicochemical and transport properties. The morphology of the membrane surfaces and their cross-sections were investigated by using a scanning electron microscope (SEM). The structure of the membranes, on the other hand, was investigated by FTIR spectroscopy and WAXS structural analysis.
Rocznik
Strony
232--242
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
  • University of Bielsko-Biala, Faculty of Materials, Civil and Environmental Engineering, Institute of Textile Engineering and Polymer Materials, Willowa 2, 43-309 Bielsko-Biala, Poland, tel. +48 338279114; fax: +48 338279100
autor
  • Silesian University of Technology, Faculty of Power and Environmental Engineering, Institute of Water and Wastewater Engineering, Konarskiego 18, 44-100 Gliwice, Poland
autor
  • University of Bielsko-Biala, Faculty of Materials, Civil and Environmental Engineering, Institute of Textile Engineering and Polymer Materials, Willowa 2, 43-309 Bielsko-Biala, Poland, tel. +48 338279114; fax: +48 338279100
  • University of Bielsko-Biala, Faculty of Materials, Civil and Environmental Engineering, Institute of Textile Engineering and Polymer Materials, Willowa 2, 43-309 Bielsko-Biala, Poland, tel. +48 338279114; fax: +48 338279100
autor
  • University of Bielsko-Biala, Faculty of Materials, Civil and Environmental Engineering, Institute of Textile Engineering and Polymer Materials, Willowa 2, 43-309 Bielsko-Biala, Poland, tel. +48 338279114; fax: +48 338279100
autor
  • University of Bielsko-Biala, Faculty of Materials, Civil and Environmental Engineering, Institute of Textile Engineering and Polymer Materials, Willowa 2, 43-309 Bielsko-Biala, Poland, tel. +48 338279114; fax: +48 338279100
  • University of Bielsko-Biala, Faculty of Materials, Civil and Environmental Engineering, Institute of Textile Engineering and Polymer Materials, Willowa 2, 43-309 Bielsko-Biala, Poland, tel. +48 338279114; fax: +48 338279100
Bibliografia
  • [1] Klemm, D., Heublein, B., Fink, H.P., Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie - Inernational Edition, 44, 3358–3393.
  • [2] Fink, H.P., Weigel, P., Purz, H.J., Ganster, J. (2001). Structure formation of regenerated cellulose materials from NMMO-solutions. Progres in Polymer Science, 26, 1473–1524.
  • [3] Edgar, K.J., Buchanan, C.M., Debenham, J.S., Rundquist, P.A., Seiler, B.D., Shelton, M.C., Tindall, D. (2001). Advances in cellulose ester performance and application. Progres in Polymer Science, 26, 1605–1688.
  • [4] Jin, H., Zha, C., Gu, L. (2007). Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydrate Research, 342, 851–858.
  • [5] Cao, Y., Zhang, R., Cheng, T., Guo, J., Xian, M., Liu, H. (2017). Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives. Applied Microbiology and Biotechnology, 101, 521–532.
  • [6] Singh, P., Duarte, H., Alves, L., Antures, F., Le Moigne, N., Dormanns, J., Duchemin, B., Staiger, M. P. (2015., Cellulose - Fundamental Aspects and Current Trends. Cellulose - Fundamental Aspects and Current Trends, 237-261.
  • [7] Pinkert, A., Marsh, K.N., Pang, S., Staiger, M.P. (2009). Ionic liquids and their interaction with cellulose. Chemical Reviews, 109, 6712–6728.
  • [8] Fukaya, Y., Hayashi, K., Wada, M., Ohno, H. (2008). Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chemistry, 10(1), 44-46.
  • [9] Laus, G., Bentivoglio, G., Schottenberger, H., Kahlenberg, V., Kopacka, H., Roeder, T., Sixta, H. (2005). Ionic Liquids: Current Dev Elopments, Potential and Drawbacks for Industr Ial Applications. Lenzinger Berichte, 84, 71–85.
  • [10] Hermanutz, F., Gähr, F., Uerdingen, E., Meister, F., Kosan, B. (2008). New developments in dissolving and processing of cellulose in ionic liquids, Macromolecular Symposia, 262, 23–27.
  • [11] Cao, Y., Wu, J., Zhang, J., Li, H., Zhang, Y., He, J. (2009). Room temperature ionic liquids (RTILs): A new and versatile platform for cellulose processing and derivatization. Chemical Engineering.Journal, 147, 13–21.
  • [12] Spörl, J.M., Ota, A., Son, S., Massonne, K., Hermanutz, F., Buchmeiser, M.R. (2016). Carbon fibers prepared from ionic liquid-derived cellulose precursors. Materials Today Commuications, 7, 1–10.
  • [13] Sundberg, J., Guccini, V., Håkansson, K.M.O., Salazar-Alvarez, G., Toriz, G., Gatenholm, P. (2015). Controlled molecular reorientation enables strong cellulose fibers regenerated from ionic liquid solutions. Polymer (United Kingdom), 75, 119–124.
  • [14] Sun, L., Chen, J.Y., Jiang, W., Lynch, V. (2015). Crystalline characteristics of cellulose fiber and film regenerated from ionic liquid solution. Carbohydate Polymers, 118, 150–155.
  • [15] Bulota, M., Michud, A., Hummel, M., Hughes, M., Sixta, H. (2016). The effect of hydration on the micromechanics of regenerated cellulose fibres from ionic liquid solutions of varying draw ratios. Carbohydrate Polymers, 151, 1110-1114.
  • [16] Xu, J., Hou, H., Liu, B., Hu, J. (2017). The integration of different pretreatments and ionic liquid processing of eucalyptus: Hemicellulosic products and regenerated cellulose fibers. Industrial Crops and Products, 101, 11–20.
  • [17] Kosan, B., Michels, C., Meister, F. (2008). Dissolution and forming of cellulose with ionic liquids. Cellulose.,15, 59–66.
  • [18] Michud, A., Hummel, M., Sixta, H. (2015). Influence of molar mass distribution on the final properties of fibers regenerated from cellulose dissolved in ionic liquid by dryjet wet spinning. Polymer (United Kingdom), 75, 1–9.
  • [19] Wanasekara, N.D., Michud, A., Zhu, C., Rahatekar, S., Sixta H., Eichhorn S.J. (2016). Deformation mechanisms in ionic liquid spun cellulose fibers. Polymer (United Kingdom), 99, 222–230.
  • [20] Suzuki, T., Kono, K., Shimomura, K., Minami, H. (2014). Preparation of cellulose particles using an ionic liquid. Journal of Colloid and Interface Science, 418, 126–131.
  • [21] Kimura, A., Nagasawa, N., Taguchi, M. (2014). Cellulose gels produced in room temperature ionic liquids by ionizing radiation. Radiation Physics and Chemistry, 103, 216–221.
  • [22] Oshima, T., Sakamoto, T., Ohe, K., Baba, Y. (2014). Cellulose aerogel regenerated from ionic liquid solution for immobilized metal affinity adsorption. Carbohydrate Polymers, 103, 62–69.
  • [23] Liao, H., Zhang, H., Hong, H., Li, Z., Qin, G., Zhu, H., Lin, Y. (2016). Novel cellulose aerogel coated on polypropylene separators as gel polymer electrolyte with high ionic conductivity for lithium-ion batteries. Journal of Membran Science, 514, 332–339.
  • [24] Östlund, Å., Idström, A., Olsson, C., Larsson, P.T., Nordstierna, L. (2013). Modification of crystallinity and pore size distribution in coagulated cellulose films. Cellulose, 20, 1657–1667.
  • [25] Ding, Z.D., Chi, Z., Gu, W.X., Gu, S.M., Liu, J.H., Wang, H.J. (2012). Theoretical and experimental investigation on dissolution and regeneration of cellulose in ionic liquid. Carbohydrate Polymers, 89, 7–16.
  • [26] Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D. (2002). Dissolution of cellulose with ionic liquids. Journal of American Chemical Society, 124, 4974-4975.
  • [27] Wendler, F., Todi, L.N., Meister, F. (2012). Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochimica Acta, 528, 76–84.
  • [28] Mahadeva, S.K., Kim, J. (2012). Influence of residual ionic liquid on the thermal stability and electromechanical behavior of cellulose regenerated from 1-ethyl-3-methylimidazolium acetate. Fibers and Polymers, 13(3), 289-294.
  • [29] Sun, N., Rahman, M., Qin, Y., Maxim, M.L., Rodríguez, H., Rogers, R.D. (2009). Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chemistry, 11, 646.
  • [30] Livazovic, S., Li, Z., Behzad, A.R., Peinemann, K.-V., Nunes, S.P. (2015). Cellulose multilayer membranes manufacture with ionic liquid. Journal of. Membran Science, 490, 282–293.
  • [31] Li, X.L., Zhu, L.P., Zhu, B.K., Xu, Y.Y. (2011). High-flux and anti-fouling cellulose nanofiltration membranes prepared via phase inversion with ionic liquid as solvent. Separation and Purification Technology, 83, 66-73.
  • [32] Turner, M.B., Spear, S.K., Holbrey, J.D., Daly, D.T., Rogers, R.D. (2005). Ionic liquid-reconstituted cellulose composites as solid support matrices for biocatalyst immobilization. Biomacromolecules, 6, 2497–2502.
  • [33] Gupta, K.M., Hu, Z., Jiang, J. (2011). Mechanistic understanding of interactions between cellulose and ionic liquids: A molecular simulation study. Polymer (Guildf), 52. 5904–5911.
  • [34] Feng, L., lan Chen, Z. (2008). Research progress on dissolution and functional modification of cellulose in ionic liquids. Journal of Molecular Liquids, 142, 1–5.
  • [35] Tan, H.T., Lee, K.T., Mohamed, A.R. (2011). Pretreatment of lignocellulosic palm biomass using a solvent-ionic liquid [BMIM]Cl for glucose recovery: An optimisation study using response surface methodology. Carbohydrate Polymers, 83, 1862–1868.
  • [36] Xiao, W., Yin, W., Xia, S., Ma, P. (2012). The study of factors affecting the enzymatic hydrolysis of cellulose after ionic liquid pretreatment. Carbohydrate Polymers, 87, 2019–2023.
  • [37] Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V., Zangeneh, H. (2014). Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. Journal of Membran Science, 453, 292–301.
  • [38] Wypych, G. (2012). Handbook of Polymers (2nd edition). ChemTec Publishing (Ontario, Canada).
  • [39] Marrinan H.J., Mann J. (1956). Infrared spectra of the crystalline modifications of cellulose. Journal of Polym. Science, 21, 301–311.
  • [40] Jung H.Z., Benerito R.R., Berni R.J., Mitcham D. (1977). Effect of low temperatures on polymorphic structures of cotton cellulose. Journal of Applied Polymer Science, 21, 1981–1988.
  • [41] Akira, I. (2001). Material Science of Cellulose. Tokyo University Press (Tokyo).
  • [42] Rabiej, M. (2017). Application of the particle swarm optimizationmethod for the analysis of wide-angle X-raydiffraction curves of semicrystalline polymers. Journal of Applied Crystallography, 50, 221-230.
  • [43] Ślusarczyk, C., Fryczkowska, B., Sieradzka, M., Janicki, J. (2016). Small-angle X-ray scattering studies of pore structure in cellulose membranes. Acta Physica Polonica A, 229–232.
  • [44] Zhang, H., Wu, J., Zhang, J., He, J. (2005). 1-allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose. Macromolecules, 38, 8272-8277.
  • [45] Xu, A., Guo, X., Xu, R. (2015). Understanding the dissolution of cellulose in 1-butyl-3-methylimidazolium acetate+DMAc solvent. International Journal of Biological Macromolecules, 81, 1000-1004.
  • [46] Mahadeva, S.K., Kim, J. (2012). Influence of residual ionic liquid on the thermal stability and electromechanical behavior of cellulose regenerated from 1-ethyl-3-methylimidazolium acetate. Fibers and Polymers, 13, 289-294.
  • [47] Çifci, C., Kaya, A. (2010). Preparation of poly(vinyl alcohol)/cellulose composite membranes for metal removal from aqueous solutions. Desalination, 253, 175-179.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09c085cd-f6ac-4c13-904f-ec121e5d4f0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.