PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and wear resistance of gas-nitrided steel after laser modification

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this work was to study the microstructure and wear resistance of hybrid surface layers, produced by a controlled gas nitriding and laser modification. Design/methodology/approach: Nitriding is well-known method of thermo-chemical treatment, applied in order to produce surface layers of improved hardness and wear resistance. The phase composition and growth kinetics of the diffusion layer can be controlled using a gas nitriding with changeable nitriding potential. In this study, gas nitriding was carried out on 42CrMo4 steel at 570°C (843 K) for 4 hours using changeable nitriding potential in order to limit the thickness of porous e zone. Next, the nitrided layer was laser-modified using TRUMPF TLF 2600 Turbo CO2 laser. Laser tracks were arranged as the multiple tracks with scanning rate vl =2.88 m/min and overlapping of about 86% using the two laser beam powers ( P ): 0.21 kW and 0.26 kW. Microstructure was observed by an optical microscope. Phase composition was studied using XRD. Hardness profiles in the produced hybrid layers was determined using a Vickers method. Wera resistance tests were performed using MBT-01 tester. Findings: Gas nitriding resulted in formation of compound zone, consisting of e nitrides close to the surface and a zone, composed of e + g' nitrides. Below the white compound zone, the diffusion zone occurred with nitric sorbite and precipitates of g' nitrides. In the microstructure after laser heat treatment (LHT) of nitrided layer, the zones were observed as follows: the re-melted zone (MZ) with e nitrides, nitric martensite and non-equilibrium FeN0.056 phase, the heat-affected zone (HAZ) with nitric martensite and precipitates of g' phase and the diffusion zone (DZ) without visible effect of laser treatment. Laser beam power influenced the depth of MZ and HAZ, so the thickness of hardened zone. The hardness of MZ was slightly decreased compared to the hardness of compound zone after gas nitriding. However, the significant increase in hardness was observed in HAZ. The formation of hybrid layers advantageously influenced the tribological properties. The laser-heat treated nitrided layers were characterized by improved wear resistance compared to the only gas-nitrided layer. Research limitations/implications: The effect of LHT on the microstructure and properties of gas-nitrided layer was limited to the two laser beam powers. In the future research, this range should be exceeded, especially, taking into account the lower values of laser beam power. It will result in laser modification without re-melting. Practical implications: The selection of suitable LHT parameters could provide the hybrid layers of modified microstructure and improved wear resistance. Originality/value: This work was related to the new concept of modification of nitrided layer by laser heat treatment.
Rocznik
Strony
12--20
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Institute of Materials Science and Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie 5, 60-965 Poznań, Poland
autor
  • Institute of Materials Science and Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie 5, 60-965 Poznań, Poland
autor
  • Institute of Precision Mechanics, ul. Duchnicka 3, 01-796 Warszawa, Poland
autor
  • Institute of Precision Mechanics, ul. Duchnicka 3, 01-796 Warszawa, Poland
  • Faculty of Production Engineering, Warsaw University of Life Sciences – SGGW, ul. Nowoursynowska 164, 02-787 Warszawa, Poland
Bibliografia
  • [1] O.V. Chudina, Modifying the steel surface by laser heating, Welding International 31/3 (2017) 233-237.
  • [2] J. Kusiński, S. Kąc, A. Kopia, A. Radziszewska, M. Rozmus-Górnikowska, B. Major, L. Major, J. Marczak, A. Lisiecki, Laser modification of the materials surface layer-a review paper, Bulletin of the Polish Academy of Sciences Technical Sciences 4/60 (2015) 711-728.
  • [3] M. Bojinović, N. Mole, B. Štok, A computer simulation study of the effects of tempearture Chance rate on austenite kinetic in laser hardening, Surface and Coatings Technology 273 (2015) 60-76.
  • [4] S. Safdar, L. Li, M.A. Sheikh, Z. Liu, An analysis of the effect of laser beam geometry on laser transformation hardening, Journal of Manufacturing Science and Engineering 128 (2006) 659-667.
  • [5] P.H. Steen, P. Ehrhard, A. Schussler, Depth of melt-pool and heat-affected zone in laser surface treatments, Metallurgical and Materials Transactions A 25 (1994) 427-435.
  • [6] E.J. Mittemeijer, Fundamentals of nitriding and nitrocarburizing, in: J. Dossett, G.E. Totten (Eds.), ASM Handbook: Steel Heat Treating Fundamentals and Processes, Vol. 4A, ASM International, Materials Park, OH, 213, 619-646.
  • [7] J. Michalski, P. Wach, J. Tacikowski, M. Betiuk, K. Burdyński, S. Kowalski, A. Nakonieczny, Contemporary Industrial Application of Nitriding and Its Modifications, Materials and Manufacturing Processes 24 (2009) 855-858.
  • [8] M. Sommers, E.J. Mittemeijer, Layer-growth kinetics on gaseous nitriding of pure iron: evolution of diffusion coefficients for nitrogen in iron nitrides, Metallurgical and Materials Transactions A 26 (1995) 57-74.
  • [9] L. Małdziński, J. Tacikowski, ZeroFlow gas nitriding of steels, in: E.J. Mittemeijer, M.A.J. Somers (Eds.), Thermochemical Surface Engineering of Steels Improving Materials Performance, Woodhead Publishing Series in Metals and Surface Engineering, Vol. 62, 2015, 459-483.
  • [10] J. Michalski, J. Tacikowski, P. Wach, J. Ratajski, Controlled gas nitriding of 40 HM and 38 HMJ steel grades with and without the surface compound layer, composed of iron nitrides, Maintenance Problems 2 (2006) 43-52.
  • [11] B.Schwartz, H. Goehring, S.R. Meka, R.E. Schacherl, E.J. Mittemeijer, Pore formation upon nitriding iron and iron-based alloys: The role of alloying elements and grain boundaries, Metallurgical and Materials Transactions A 45 (2014) 6173-6186.
  • [12] J. Michalski, K. Burdyński, P. Wach, Z. Łataś, Nitrogen availability of nitriding atmosphere in controlled gas nitriding processes, Archives of Metallurgy and Materials 60 (2015) 747-754.
  • [13] B. Wang, S. Sun, M. Guo, G. Jin, Z. Zhou, W. Fu, Study on pressurized gas nitriding characteristics for steel 3 CrMoAlA, Surface and Coatings Technology 279 (2015) 60-64.
  • [14] P. Kula, E. Wołowiec, R. Pietrasik, K. Dybowski, B. Januszewicz, Non-steady state approach to the vacuum nitriding for tools, Vacuum 88/1 (2013) 1-7.
  • [15] J. Ratajski, Relation between phase composition of compouned zone and growth kinetics of diffusion zone during nitriding of steel, Surface and Coatings Technology 203 (2009) 2300-2306.
  • [16] J. Ratajski, T. Suszko, Modeling of the nitriding process, Journal of Materials Processing Technology 195 (2008) 212-217.
  • [17] M. Ogórek, Z. Skuza, T. Frączek, The efficiency of ion nitriding of austenitic stainless steel 304 using the “Active screen”, Metalurgija 54/1 (2015) 147-150.
  • [18] T. Frączek, M. Olejnik, A. Tokarz, Evaluation of plasma nitriding efficiency of titanum alloys for medical applications, Metalurgija 48/2 (2009) 83-86.
  • [19] T. Borowski, A. Brojanowska, M. Kost, H. Garbacz, T. Wierzchoń, Modifying the properties of the Inconel 625 nickel alloy by glow discharge assisted nitriding, Vacuum 83 (2009) 1489-1493.
  • [20] F. Hakami, A. Pramanik, A.K. Basak, Duplex surface treatment of steels by nitriding and chromizing, Australian Journal of Mechanical Engineering 15/1 (2017) 55-72.
  • [21] B. Miao, Y. Chai, K. Wei, J. Hu, A novel duplex plasma treatment combining plasma nitrocarburizing and plasma nitriding, Vacuum 133 (2016) 54-57.
  • [22] E.L. Dalibon, V. Trava-Airoldi, L.A. Pereira, A. Cabo, S.P. Bruhl, Wear resistance of nitriding and DLC coated PH stainless steel, Surface and Coatings Technology 255 (2014) 22-27.
  • [23] T. Omori, T. Morita, K. Okada, H. Maeda, Effect of Hybrid Surface Treatments on Fretting Fatigue Strength of Stainless Steel, Materials Transactions 56 (2015) 389-397.
  • [24] M.F. Yan, Y.X. Wang, X.T. Chen, L.X. Guo, C.S. Zhang, Y. You, B. Bai, L. Chen, Z. Long, R.W. Li, Laser quenching of plasma nitriding 30CrMnSiA steel, Material and Design 58 (2014) 154-160.
  • [25] M. Kulka, J. Michalski, D. Panfil, P. Wach, Laser heat treatment of gas-nitrided layer produced on 42CrMo4 steel, Materials Engineering 36/5 (2015) 301-305.
  • [26] M. Kulka, D. Panfil, J. Michalski, P. Wach, The effect of laser surface modification on the microstructure and properties of gas-nitrided 42CrMo4 steel, Optics and Laser Technology 82 (2016) 203-219.
  • [27] D. Panfil, M. Kulka, P. Wach, J. Michalski, D. Przestacki, Nanomechanical properties of iron nitrides produced on 42CrMo4 steel by controlled gas nitriding and laser heat treatment, Journal of Alloys and Compounds 706 (2017) 63-75.
  • [28] D. Panfil, P. Wach, M. Kulka, J. Michalski, The influence of laser re-melting on microstructure and hardness of gas-nitrided steel, Archives of Mechanical Technology and Materials 36 (2016) 18-22.
  • [29] M. Kulka, D. Panfil, J. Michalski, P. Wach, The effect of laser heat treatment parameters on the microstructure and hardness of gas-nitrided layers, Materials Engineering 6(214) (2016) 161-167.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09bb6bdd-20c3-4467-8cd9-788194b841b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.