PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modification Mechanism and Growth Process of Al3(Sc, Zr) Particles in As-cast Al-Si-Mg-Cu-Zr-Sc Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the modification mechanism and growth process of Al3(Sc, Zr) particles in as-cast Al-Si-Mg-Cu based alloy with addition of Sc and Zr were systematically investigated. It was found that 0.57 wt-%Sc addition caused a significant refinement in the average grain size of the investigated alloy, which brought about a remarkable transformation in as-cast microstructure, from thick dendritic shape to fine equiaxed structure. A large amount of primary Al3(Sc, Zr) particles with the dimension of around 5-6 μm were also observed within the equiaxed grain. Due to the identical orientation and similar crystal structure between primary Al3(Sc, Zr) particles and α-Al matrix, the primary particles always served as heterogeneous nucleus for the α-Al matrix. In addition, these cusped cubic primary Al3(Sc, Zr) particles showed triangle, star, rhomboid morphologies are generated from sectioning the particle in (111), (100) and (110) planes, respectively. Particularly, the typical eutectic structure which contained odd number-layer (Al3(Sc, Zr)+α-Al+ ... +Al3(Sc, Zr)) was observed within the investigated particles.
Rocznik
Strony
51--56
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Hefei University of Technology, School of Materials Science and Engineering, Hefei 230009, China
autor
  • Hefei University of Technology, School of Materials Science and Engineering, Hefei 230009, China
autor
  • Hefei University of Technology, School of Materials Science and Engineering, Hefei 230009, China
autor
  • Hefei University of Technology, School of Materials Science and Engineering, Hefei 230009, China
autor
  • Hefei University of Technology, School of Materials Science and Engineering, Hefei 230009, China
autor
  • Hefei University of Technology, School of Materials Science and Engineering, Hefei 230009, China
autor
  • Hefei University of Technology, School of Materials Science and Engineering, Hefei 230009, China
Bibliografia
  • [1] Shu, D., Sun, B., Mi, J. & Grant, P.S. (2011). A quantitative study of solute diffusion field effects on heterogeneous nucleation and the grain size of alloys. Acta Materialia. 59(5), 2135-2144. DOI: 10.1016/j.actamat.2010.12.014.
  • [2] Men, H. & Fan, Z. (2011). Effects of solute content on grain refinement in an isothermal melt. Acta Materialia, 59(7). 2704-2712. DOI: 10.1016/j.actamat.2011.01.008.
  • [3] Górny, M., Sikora, G. & Kawalec, M. (2016). Effect of Titanium and Boron on the Stability of Grain Refinement of Al-Cu Alloy. Archives of Foundry Engineering. 16(3), 35-38. DOI: 10.1515/afe-2016-0045.
  • [4] Górny, M. & Sikora, G. (2014). Effect of Modification and Cooling Rate on Primary Grain in Al-Cu Alloy. Archives of Foundry Engineering. 14(3), 21-24. DOI: 10.2478/afe-2014-0054.
  • [5] Stjohn, D.H., Qian, M., Easton, M.A. & Cao, P. (2011). The interdependence theory: the relationship between grain formation and nucleant selection. Acta Materialia. 59(12), 4907-4921. DOI: 10.1016/j.actamat.2011.04.035.
  • [6] Mohanty, P.S. & Gruzleski, J.E. (1995). Mechanism of grain refinement in aluminium. Acta Metallurgica et Materialia. 43(5), 2001-2012. DOI: 10.1016/0956-7151(94)00405-7.
  • [7] Patakham, U., Kajornchaiyakul, J. & Limmaneevichitr, C. (2012). Grain refinement mechanism in an Al–Si–Mg alloy with scandium. Journal of Alloys & Compounds. 542(1), 177-186. DOI: 10.1016/j.jallcom.2012.07.018.
  • [8] Li, J.H., Oberdorfer, B., Wurster, S. & Schumacher, P. (2014). Impurity effects on the nucleation and growth of primary Al3(Sc, Zr) phase in Al alloys. Journal of Materials Science. 49(17), 5961-5977. DOI: 10.1007/s10853-014-8315-z.
  • [9] Hyde, K.B., Norman, A.F. & Prangnell, P.B. (2001). The effect of cooling rate on the morphology of primary Al3Sc intermetallic particles in Al–Sc alloys. Acta Materialia. 49(8), 1327-1337. DOI: 10.1016/S1359-6454(01)00050-7.
  • [10] Singh, V., Prasad, K.S. & Gokhale, A.A. (2004). Effect of minor Sc additions on structure, age hardening and tensile properties of aluminium alloy AA8090 plate. Scripta Materialia. 50(6), 903-908. DOI: 10.1016/j.scriptamat.2003.12.001.
  • [11] Lee, S., Utsunomiya, A., Akamatsu, H., Neishi, K., Furukawa, M., Horita, Z. & Langdon, T.G. (2002). Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al–Mg alloys. Acta Materialia. 50(3), 553-564. DOI: 10.1016/S1359-6454(01)00368-8.
  • [12] Cavaliere, P. & Marco, P.P.D. (2007). Friction stir processing of a Zr-modified 2014 aluminium alloy. Materials Science & Engineering A. 462(1-2), 206-210. DOI: 10.1016/j.msea.2006.04.159.
  • [13] Gao, Z.H., Li, H.Y., Lai, Y.Q., Ou, Y.X. & Li, D.W. (2013). Effects of minor Zr and Er on microstructure and mechanical properties of pure aluminum. Materials Science & Engineering A. 580(10), 92-98. DOI: 10.1016/j.msea.2013.05.035.
  • [14] Pramod, S.L., Ravikirana, Rao, A.K.P., Murty, B.S. & Bakshi, S.R. (2016). Effect of Sc addition and T6 aging treatment on the microstructure modification and mechanical properties of A356 alloy. Materials Science & Engineering A. 674, 438-450. DOI: 10.1016/j.msea.2016.08.022.
  • [15] Xu, C., Xiao, W.L., Hanada, S.J., Yamagata, H. & Ma, C.L. (2015). The effect of scandium addition on microstructure and mechanical properties of Al–Si–Mg alloy: a multi-refinement modifier. Materials Characterization. 110, 160-169. DOI: 10.1016/j.matchar.2015.10.030.
  • [16] Emadi, D., Rao, A.K.P. & Mahfoud, M. (2010). Influence of scandium on the microstructure and mechanical properties of A319 alloy. Materials Science & Engineering A. 527(23), 6123-6132. DOI: 10.1016/j.msea.2010.06.042.
  • [17] Arfan, M., Cong, X., Wang, X.J., Shu, J.H., Hiroshi, Y., Hao, L.R. & Ma, C.L. (2014). High strength aluminum cast alloy: A Sc modification of a standard Al–Si–Mg cast alloy. Materials Science & Engineering A. 604, 122-126. DOI: 10.1016/j.msea.2014.03.005.
  • [18] Deng, Y., Yin, Z.M., Zhao, K., Duan, J.Q. & He, Z.B. (2012). Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al–Zn–Mg alloys. Journal of Alloys & Compounds. 530(7), 71-80. DOI: 10.1016/j.jallcom.2012.03.108.
  • [19] Li, B., Pan, Q.L., Chen, C.P., Wu, H.H. & Yin, Z.M. (2016). Effects of solution treatment on microstructural and mechanical properties of Al–Zn–Mg alloy by microalloying with Sc and Zr. Journal of Alloys & Compounds. 664, 553-564. DOI: 10.1016/j.jallcom.2016.01.016.
  • [20] Li, B., Pan, Q.L., Huang, X. & Yin, Z.M. (2014). Microstructures and properties of Al–Zn–Mg–Mn alloy with trace amounts of Sc and Zr. Materials Science & Engineering A. 616, 219-228. DOI: 10.1016/j.msea.2014.08.024.
  • [21] Shi, Y.J., Pan, Q.L., Li, M.J., Huang, X. & Li, B. (2015). Influence of alloyed Sc and Zr, and heat treatment on microstructures and stress corrosion cracking of Al–Zn–Mg–Cu alloys. Materials Science & Engineering A. 621, 173-181. DOI: 10.1016/j.msea.2014.10.058.
  • [22] Li, J.H., Wiessner, M., Albu, M., Wurster, S., Sartory, B., Hofer, F. & Schumacher, P. (2015). Correlative characterization of primary Al3(Sc,Zr) phase in an Al–Zn–Mg based alloy. Materials Characterization, 102, 62-70. DOI: 10.1016/j.matchar.2015.01.018.
  • [23] Song, M. & He, Y.H. (2011). Investigation of primary Al3(Sc,Zr) particles in Al–Sc–Zr alloys. Materials Science & Technology, 26(1), 431-433. DOI: 10.1179/174328409X443236.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09b763f8-d42c-4b30-a66d-6a2447eeb607
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.