PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza wpływu struktury regulatorów liniowych na poziom nierównomierności prędkości silnika PMSM

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Analysis of influence of linear regulators' structure on level of speed unevenness of PMSM direct drive
Języki publikacji
PL
Abstrakty
PL
W pracy dokonano przeglądu struktur regulatorów PID2DOF, przedstawiono wyniki symulacyjnego procesu optymalizacji nastaw tych regulatorów dla modelu napędu bezpośredniego z silnikiem PMSM z uwzględnieniem tętnień momentu. Przeprowadzono dwie serie optymalizacji nastaw analizowanych struktur za pomocą algorytmu genetycznego: pierwszą pod kątem tłumienia nierównomierności prędkości napędu bezpośredniego wywołanych tętnieniami momentu; drugą – referencyjną – pod kątem minimalizacji kwadratu uchybu z pominięciem modelu tętnień.
EN
This paper reviews structures of the PID2DOF controllers and presents results of a simulation process of optimizing the settings of these controllers for a PMSM direct drive model including torque ripple. Two series of optimization of the settings of these structures with the use of genetic algorithm were executed: first one in terms of minimization of speed unevenness caused by torque ripples, second – referential – in terms of ISE minimization.
Rocznik
Strony
59--67
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Politechnika Poznańska, Instytut Automatyki, Robotyki i Inżynierii Informatycznej, ul. Piotrowo 3a, 60-965 Poznań
  • Politechnika Poznańska, Instytut Automatyki, Robotyki i Inżynierii Informatycznej, ul. Piotrowo 3a, 60-965 Poznań
Bibliografia
  • [1] Shankar V.K.A., Umashankar S., Paramasivam S., Investigations on performance evaluation of VFD fed PMSM using DTC control strategies for pumping applications, 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), (2017), 1–8
  • [2] Ducar I., Marinescu C., Comparative study for reversible pump at variable speed in PMSM applications, 2015 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE), (2015), 205–210
  • [3] Gottipati P.; Dobzhanskyi O., Mendrela E.A., In-wheel brushless DC motor for a wheel chair drive, 2010 Joint International Conference on Power Electronics, Drives and Energy Systems 2010 Power India, (2010), 1–4
  • [4] Dorrell D.G., Popescu M., Evans L., Staton D.A., Knight A.M., Comparison of permanent magnet drive motor with a cage induction motor design for a hybrid electric vehicle, The 2010 International Power Electronics Conference - ECCE ASIA, (2010), 1807–1813
  • [5] McElveen R.F.; Holub R., Martin W.E., Replacing induction motors with caged rotor permanent magnet motors: application considerations cost analysis, 2017 Petroleum and Chemical Industry Technical Conference (PCIC), (2017), 435–442
  • [6] Vartanian R., Toliyat H.A., Design and comparison of an optimized permanent magnet-assisted synchronous reluctance motor (PMa-SynRM) with an induction motor with identical NEMA Frame stators, 2009 IEEE Electric Ship Technologies Symposium, 2009, 107–112
  • [7] Asada H., Youcef-Toumi K., Direct-Drive Robots: Theory and Practice, MITP, (1987)
  • [8] Černigoj A., Gašparin L., Fišer R., Native and additional cogging torque components of PM synchronous motors — evaluation and reduction, Automatika, 51 (2010), nr 2, 157–165
  • [9] Lee J.-J., Kwon S.-O.; Hong J.-P., Ha, K.-H., Cogging torque analysis of the PMSM for high performance electrical motor considering magnetic anisotropy of electrical steel, World Electric Vehicle Journal, 3 (2009), nr 2, 365–369
  • [10] Wang D., Wang X., Jung S., Cogging torque minimization and torque ripple suppression in surface-mounted permanent magnet synchronous machines using different magnet widths, IEEE Transactions on Magnetics, 49 (2013), nr 5, 2295–2298.
  • [11] Goryca Z., Ziółek M., Malinowski M., Moment zaczepowy wielobiegunowej maszyny z magnesami trwałymi, Maszyny Elektryczne: zeszyty problemowe, 88 (2010), 53–56
  • [12] Chikouche B.L.; Boughrara K., Ibtiouen R., Cogging torque minimization of surface-mounted permanent magnet synchronous machines using hybrid magnet shapes, Progress in Electromagnetics Research B, 62 (2015), 49–61
  • [13] Kang J., Li X., Liu Y., Mu S., Wang S., Predictive current control with torque ripple minimization for PMSM of electric wehicles, 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), (2018), 1–6
  • [14] Jian Z., Xuhui W., Wenshan L., Peilei Z., Speed ripple minimization for interior-type PMSM using self-learning fuzzy control strategy, 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), (2014), 1–4
  • [15] Feng G., Lai C., Kar N.C., Practical testing solutions to optimal stator harmonic current design for PMSM torque ripple minimization using speed harmonics, IEEE Transactions on Power Electronics, 33 (2018), nr 6, 5181–5191
  • [16] Pajchrowski T., Application of neural networks for compensation of torque ripple in high performance PMSM motor, 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), (2017), 1–8
  • [17] Houari A., Auger F., Olivier J., Machmoum M., A new compensation technique for PMSM torque ripple minimization, 2015 IEEE Industry Applications Society Annual Meeting, (2015), 1–6 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 96 NR 7/2020 67
  • [18] Stamenkovic I., Jovanovic D., Vukosavic, S., Torque ripple verification in PM machines, EUROCON 2005 – The International Conference on ‘Computer as a Tool’, (2005), 1497–1500.
  • [19] Gulez K., Adam A.A., Adaptive neural network based controller for direct torque control of PMSM with minimum torque ripples, SICE Annual Conference 2007, (2007), 174–179
  • [20] Bingi K., Ibrahim R., Karsiti M.N., Hassan S.M., Harindran, V.R., A comparative study of 2DOF PID and 2DOF fractional order PID controllers on a class of unstable systems, Archives of Control Sciences, 28, (2018), nr 4, 635–682
  • [21] Dong Hwa K., Tuning of 2-DOF PID controller by immune algorithm, Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02, (2002), 675–680
  • [22] Debnath M.K., Singh M.B, Mallick, R.K., Design of optimal 2- DOF PID controller using GWO technique for automatic generation control of a multisource power system, 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON), (2016), 531– 536
  • [23] Dong Hwa K., Application of multivariable 2-DOF PID controller with neural network tuning method to the heat exchange, FUZZ-IEEE’99. 1999 IEEE International Fuzzy Systems. Conference Proceedings, (1999), 574–578
  • [24] Pajchrowski T., Kompensacja tętnień momentu w napędzie bezpośrednim z silnikiem PMSM, Poznan University of Technology Academic Journals. Electrical Engineering, 72 (2012), 93-100
  • [25] Pajchrowski, T., Zastosowanie sieci neuronowej do poprawy nierównomierności prędkości obrotowej silnika momentowego, X Krajowa Konferencja Naukowa Sterowanie w Energoelektronice i Napędzie Elektrycznym, SENE 2011, (2011), 1-6
  • [26] Hsiao C.-Y., Yeh S.-N., Hwang, J.-C.: A novel cogging torque simulation method for permanent-magnet synchronous machines, Energies, 4 (2011), n. 12, 2166–217
  • [27] Aström K.J., Hägglund T., The Future of PID Control, IFAC Proceedings Volumes, 33 (2000), nr 4, 19–30
  • [28] Gorez, R., Brief new design relations for 2-DOF PID-like control systems, Automatica, 39 (2003), nr 5, 901–908
  • [29] Aström K.J., Murray R.M., Feedback systems: an introduction for scientists and engineers, Princeton University Press, (2008)
  • [30] Gao X., Shang C., Huang D., Yang F., A novel approach to monitoring and maintenance of industrial PID controllers, Control Engineering Practice, 64 (2017), 111–126.
  • [31] Pachauri N., Singh V., Rani, A.,Two degree of freedom PID based inferential control of continuous bioreactor for ethanol production, ISA Transactions, 68 (2017), pp. 235–250.
  • [32] Alfaro V.M., Vilanova, R., Model reference robust tuning of 2DoF PI controllers for integrating controlled processes, 2012 20th Mediterranean Conference on Control & Automation (MED), (2012), 1079–1084
  • [33] Hejra M., Mansouri A. and Trabeisi H., Optimal design of a permanent magnet synchronous motor: Application of in-wheel motor, 2014 5th International Renewable Energy Congress (IREC), (2014), 1–5
  • [34] Shao X., Xiao L., Han C. Optimization of PID parameters based on genetic algorithm and interval algorithm, 2009 Chinese Control and Decision Conference, (2009), 741–745
  • [35] Korkmaz M., Aydogdu Ö., Dogan H., Design and performance comparison of variable parameter nonlinear PID controller and genetic algorithm based PID controller, 2012 International Symposium on Innovations in Intelligent Systems and Applications, (2012), 1–5
  • [36] Ellis G. Control Systems Design Guide, Elsevier Academic Press, 2004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09a8c006-62df-4223-8f2a-ff344b26adbf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.