Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Concrete is a constantly evolving building material whose demand is increasing due to population growth and urban development. This calls for more research on this composite material to improve its performance. However, concrete has some disadvantages, including that it is a brittle material and cannot withstand tensile stress. Therefore, rebars and fibers are incorporated into concrete to improve this property. Although previous works investigated the properties of concrete containing steel fibers, most of them were concerned with mechanical properties, while the durability properties still require further investigation to understand them. Thus, the purpose of this study is to ascertain how adding steel fibers to concrete in varying proportions (0.5, 1 and 1.5%) affects its mechanical and durability properties, including compressive strength, flexural strength, tensile strength, bulk density, water absorption, mode of failure, ultrasonic pulse velocity, dynamic modulus of elasticity and electrical resistance. Statistical relationships between the compressive strength and other characteristics were also established. The results indicated that all mechanical and durability characteristics significantly improved after adding steel fibers for all addition ratios, except for electrical resistivity, which showed lower values than the reference mixture for the 0.5 and 1% steel fiber proportions. Moreover, it was found that the best addition rate of steel fibers was 1.5%. At this percentage, the recorded increasing rates over the control sample were 29.3% in compressive strength, 83.7% in tensile strength, 27.9% in flexural strength, 50.1 in water absorption resistance, and 11.2% in electrical resistivity.
Wydawca
Rocznik
Tom
Strony
163--175
Opis fizyczny
Bibbliogr. 58 poz., fig., tab.
Twórcy
autor
- Al-Mussaib Technical Institute, Al-Furat Al-Awsat Technical University (ATU), 51009 Babylon, Iraq
autor
- College of Engineering, University of Babylon, Iraq
autor
- Al-Mussaib Technical Institute, Al-Furat Al-Awsat Technical University (ATU), 51009 Babylon, Iraq
autor
- Al-Mussaib Technical Institute, Al-Furat Al-Awsat Technical University (ATU), 51009 Babylon, Iraq
Bibliografia
- 1. Ahmad J., Zhou Z. Mechanical properties of natural as well as synthetic fiber reinforced concrete: A review. Constr. Build. Mater. 2022; 333: 127353. https://doi.org/10.1016/j.conbuildmat.2022.127353.
- 2. Alwesabi E.A.H., Bakar B.H.A., Alshaikh I.M.H., Zeyad A.M., Altheeb A., Alghamdi H. Experimental investigation on fracture characteristics of plain and rubberized concrete containing hybrid steelpolypropylene fiber. In: Structures, Elsevier; 2021; 33: 4421–4432.
- 3. Zhang P., Wang W., Lv Y., Gao Z., Dai S. Effect of polymer coatings on the permeability and chloride ion penetration resistances of nano-particles and fibers-modified cementitious composites. Polymers (Basel). 2022; 14(16): 3258.
- 4. Zhang P., Wang C., Gao Z., Wang F. A review on fracture properties of steel fiber reinforced concrete. J. Build. Eng. 2023; 67:105975.
- 5. Dhanapal J., Jeyaprakash S. Mechanical properties of mixed steel fiber reinforced concrete with the combination of micro and macro steel fibers. Struct. Concr. 2020; 21(1):458–467.
- 6. Liew K.M., Akbar A. The recent progress of recycled steel fiber reinforced concrete. Constr. Build. Mater. 2020; 232:117232. https://doi.org/10.1016/j.conbuildmat.2019.117232.
- 7. Ammari M.S., Belhadj B., Bederina M., Ferhat A., Quéneudec M. Contribution of hybrid fibers on the improvement of sand concrete properties: Barley straws treated with hot water and steel fibers. Constr. Build. Mater. 2020; 233:117374. https://doi.org/10.1016/j.conbuildmat.2019.117374.
- 8. Zaid O., Ahmad J., Siddique M.S., Aslam F. Effect of incorporation of rice husk ash instead of cement on the performance of steel fibers reinforced concrete. Front. Mater. 2021; 8: 665625.
- 9. Ahmad J., Al-Dala’ien R.N.S., Manan A., Zaid O., Ahmad M. Evaluating the effects of flexure cracking behaviour of beam reinforced with steel fibres from environment affect. J. Green Eng 2020; 10: 4998–5016.
- 10. Khan M., Cao M., Xie C., Ali M. Effectiveness of hybrid steel-basalt fiber reinforced concrete under compression. Case Stud. Constr. Mater. 2022; 16:e00941.
- 11. Abdulridha S.Q., Nasr M.S., Al-Abbas B.H., Hasan Z.A. Mechanical and structural properties of waste rope fibers-based concrete: An experimental study. Case Stud. Constr. Mater. 2022; 16: e00964.
- 12. Nasr M.S., Hasan Z.A., Abed M.K., Mohammed K., Najim W.N., Shubbar A.A., Habeeb D.D. Utilization of high volume fraction of binary combinations of supplementary cementitious materials in the production of reactive powder concrete. Period. Polytech. Civ. Eng. 2021; 65(1): 335–343. https://doi.org/10.3311/PPci.16242.
- 13. Mydin M.A.O. Investigating the effect of sisal fibre content on durability properties of lightweight foamed concrete. Adv. Sci. Technol. Res. J. 2022; 16(2).
- 14. Awchat G.D. Cost-benefit analysis of using recycled coarse aggregate in plain and fiber reinforced concrete. Adv. Sci. Technol. Res. J. 2021; 15(3): 233–242.
- 15. Nayel I.H., Nasr M.S., Abdulridha S.Q. Impact of elevated temperature on the mechanical properties of cement mortar reinforced with rope waste fibres. In: IOP Conference Series: Materials Science and Engineering, vol 671. IOP Publishing; 2020: 12080.
- 16. Jasim M.H., Al-Salim N.H.A. Enhancement behavior of reinforced concrete beam with transverse holes under combined twisting and bending usingsteel fiber. In: Journal of Physics: Conference Series, IOP Publishing; 2021; 1973: 12027.
- 17. Zheng Y., Lv X., Hu S., Zhuo J., Wan C., Liu J. Mechanical properties and durability of steel fiber reinforced concrete: A review. J. Build. Eng. 2024; 82: 108025. https://doi.org/10.1016/j.jobe.2023.108025.
- 18. Kaplan G., Bayraktar O.Y., Gholampour A., Gencel O., Koksal F., Ozbakkaloglu T. Mechanical and durability properties of steel fiber‐reinforced concrete containing coarse recycled concrete aggregate. Struct. Concr. 2021; 22(5): 2791–2812.
- 19. Ibrahim Y.E., Fawzy K., Farouk M.A. Effect of steel fiber on the shear behavior of reinforced recycled aggregate concrete beams. Struct. Concr. 2021; 22(3): 1861–1872.
- 20. Senaratne S., Gerace D., Mirza O., Tam V.W.Y., Kang W.-H. The costs and benefits of combining recycled aggregate with steel fibres as a sustainable, structural material. J. Clean. Prod. 2016; 112: 2318–2327.
- 21. Abbas S., Soliman A.M., Nehdi M.L. Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages. Constr. Build. Mater. 2015; 75: 429–441.
- 22. Abbass W., Khan M.I., Mourad S. Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete. Constr. Build. Mater. 2018; 168: 556–569.
- 23. Yang J., Chen B., Nuti C. Influence of steel fiber on compressive properties of ultra-high performance fiber-reinforced concrete. Constr. Build. Mater. 2021; 302: 124104. doi:https://doi.org/10.1016/j.conbuildmat.2021.124104.
- 24. Liu C., Hunag X., Wu Y.-Y., Deng X., Zheng Z., Yang B. Studies on mechanical properties and durability of steel fiber reinforced concrete incorporating graphene oxide. Cem. Concr. Compos. 2022; 130: 104508.
- 25. Naser M., Falah M., Naser F., Nasr M., Hashim T., Shubbar A. The effect of industrial and waste fibers on concrete strength and structural behavior of RC short columns. Iium Eng. J. 2024; 25(1): 87–101.
- 26. Rashidi M., Kargar S., Roshani S. Experimental and numerical investigation of steel fiber concrete fracture energy. Structures 2024; 59: 105792. https://doi.org/10.1016/j.istruc.2023.105792.
- 27. Zhou M., He X., Wang H., Wu W., He J., Wu C. Experimental study of mechanism properties of interfacial transition zones in steel fiber reinforced concrete. Case Stud. Constr. Mater. 2024; 20: e02954. https://doi.org/10.1016/j.cscm.2024.e02954.
- 28. Iraqi Standard NO.5. Portland Cement. Central Organization for Standardization and Quality Control, Baghdad, Iraq; 2019.
- 29. Iraqi Standard NO.45. Aggregate from Natural Sources for Concrete and Building Construction. Central Organization for Standardization and Qualty Control, Baghdad, Iraq; 2010.
- 30. BS EN 12390-3. Testing hardened concrete Part 3: Compressive strength of test specimens. British Standard Institution (BSI), London, UK; 2009.
- 31. ASTM C597. Standard test method for pulse velocity through concrete. ASTM International, West Conshohocken, PA; 2009.
- 32. ASTM C642. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International, West Conshohocken, PA; 2013.
- 33. ASTM C496. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA; 2011.
- 34. ASTM C78. Standard test method for flexural strength of concrete (using simple beam with third-point loading). ASTM International, West Conshohocken, PA; 2015.
- 35. Rusati P.K., Song K.-I. Magnesium chloride and sulfate attacks on gravel-sand-cement-inorganic binder mixture. Constr. Build. Mater. 2018; 187: 565–571.
- 36. Tayeh B.A., Akeed M.H., Qaidi S., Bakar B.H.A. Ultra-high-performance concrete: Impacts of steel fibre shape and content on flowability, compressive strength and modulus of rupture. Case Stud. Constr. Mater. 2022; 17: e01615. https://doi.org/10.1016/j.cscm.2022.e01615.
- 37. Gao D., Wang F. Effects of recycled fine aggregate and steel fiber on compressive and splitting tensile properties of concrete. J. Build. Eng. 2021; 44: 102631. https://doi.org/10.1016/j.jobe.2021.102631.
- 38. Li B., Yu S., Gao B., ang Li Y., Wu F., Xia D., Chi Y., Wang S. Effect of recycled aggregate and steel fiber contents on the mechanical properties and sustainability aspects of alkali-activated slag-based concrete. J. Build. Eng. 2023; 66: 105939. https://doi.org/10.1016/j.jobe.2023.105939.
- 39. Xu L., Wu F., Chi Y., Cheng P., Zeng Y., Chen Q. Effects of coarse aggregate and steel fibre contents on mechanical properties of high performance concrete. Constr. Build. Mater. 2019; 206: 97–110. https://doi.org/10.1016/j.conbuildmat.2019.01.190.
- 40. Han J., Zhao M., Chen J., Lan X. Effects of steel fiber length and coarse aggregate maximum size on mechanical properties of steel fiber reinforced concrete. Constr. Build. Mater. 2019; 209: 577–591. https://doi.org/10.1016/j.conbuildmat.2019.03.086.
- 41. Zhang W., Zheng M., Zhu L., Ren Y., Lv Y. Investigation of steel fiber reinforced high-performance concrete with full aeolian sand: Mix design, characteristics and microstructure. Constr. Build. Mater. 2022; 342: 128065. https://doi.org/10.1016/jconbuildmat.2022.128065.
- 42. Papachristoforou M., Anastasiou E.K., Papayianni I. Durability of steel fiber reinforced concrete with coarse steel slag aggregates including performance at elevated temperatures. Constr. Build. Mater. 2020; 262: 120569. https://doi.org/10.1016/j.conbuildmat.2020.120569.
- 43. Shah S.H.A., Ali B., Ahmed G.H., Tirmazi S.M.T., El Ouni M.H., Hussain I. Effect of recycled steel fibers on the mechanical strength and impact toughness of precast paving blocks. Case Stud. Constr. Mater. 2022; 16: e01025. https://doi.org/10.1016/j.cscm.2022.e01025.
- 44. Demirel S., Öz H.Ö., Güneş M., Çiner F., Adın S. Life-cycle assessment (LCA) aspects and strength characteristics of self-compacting mortars (SCMs) incorporating fly ash and waste glass PET. Int. J. Life Cycle Assess. 2019; 24: 1139–1153.
- 45. Zhang P., Li Q., Chen Y., Shi Y., Ling Y.-F. Durability of steel fiber-reinforced concrete containing SiO2 nano-particles. Materials (Basel). 2019; 12(13): 2184.
- 46. Vijayalakshmi M., Sekar A.S.S. Strength and durability properties of concrete made with granite industry waste. Constr. Build. Mater. 2013; 46: 1–7.
- 47. Mardani-Aghabaglou A., Tuyan M., Yılmaz G., Arıöz Ö., Ramyar K. Effect of different types of superplasticizer on fresh, rheological and strength properties of self-consolidating concrete. Constr. Build. Mater. 2013; 47: 1020–1025.
- 48. Zaid O., Mukhtar F.M., M-García R., El Sherbiny M.G., Mohamed A.M. Characteristics of high-performance steel fiber reinforced recycled aggregate concrete utilizing mineral filler. Case Stud. Constr. Mater. 2022; 16: e00939. https://doi.org/10.1016/j.cscm.2022.e00939.
- 49. Jain A., Sharma N., Choudhary R., Gupta R., Chaudhary S. Utilization of non-metalized plastic bag fibers along with fly ash in concrete. Constr. Build. Mater. 2021; 291: 123329.
- 50. Abadel A.A., Nasr M.S., Shubbar A., Hashim T.M., Tuladhar R. Potential use of rendering mortar waste powder as a cement replacement material: fresh, mechanical, durability and microstructural properties. Sustainability 2023; 15(15): 11659.
- 51. Ghasemzadeh Mosavinejad S.H., Langaroudi M.A.M., Barandoust J., Ghanizadeh A. Electrical and microstructural analysis of UHPC containing short PVA fibers. Constr. Build. Mater. 2020; 235: 117448. https://doi.org/10.1016/j.conbuildmat.2019.117448.
- 52. Luo T., Pan X., Sun Q., Liu F., Hua C., Yi Y. A study on damage of steel fiber reinforced concrete (SFRC) under uniaxial compression based on the electrical resistivity method. Mater. Struct. 2022; 55(7): 173.
- 53. Afroughsabet V., Ozbakkaloglu T. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Constr. Build. Mater. 2015; 94: 73–82.
- 54. Cleven S., Raupach M., Matschei T. Electrical resistivity measurements to determine the steel fiber content of concrete. Struct. Concr. 2022; 23(3): 1704–1717.
- 55. Bremner T., Hover K., Poston R., et al. ACI 222R-01 protection of metals in concrete against corrosion. Am. Concr. Inst. Farmingt. Hills, MI, USA 2001.
- 56. Alsaif A. Utilization of ceramic waste as partially cement substitute – A review. Constr. Build. Mater. 2021; 300: 124009. https://doi.org/10.1016/j.conbuildmat.2021.124009.
- 57. Li B., Chi Y., Xu L., Shi Y., Li C. Experimental investigation on the flexural behavior of steelpolypropylene hybrid fiber reinforced concrete. Constr. Build. Mater. 2018; 191: 80–94. https://doi.org/10.1016/j.conbuildmat.2018.09.202.
- 58. El-Dieb A.S., Kanaan D.M. Ceramic waste powder an alternative cement replacement–Characterization and evaluation. Sustain. Mater. Technol. 2018; 17: e00063.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09a465a9-c86c-4718-97fa-81b3fe9db1db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.