PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Compromise of two-criteria final payoff of the game ship control in collision situations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The essence of the article is the use of multi-criteria static optimization of object motion, based on a set of optimal Pareto points in the space of possible variants of solutions for a new approach to the problem as a game control. Using the example of the two-criteria optimization of the final payoff of the object game control during the safe evasion of the encountered objects, six methods of multi-criteria static optimization are presented—Bentham's utilitarian rule, Rawls's principle of justice, Salukvadze's benchmark, Benson's weighted sums, Haimes's constraints, and goal-oriented programming. In the end, the results obtained by the two-criteria optimization are compared with regard to the values of the components of the final game payoff—the risk of collision and the deviation of the object from the safe route of the set trajectory of movement. The directions for the development of multi-criteria optimization methods, both static and dynamic, and the game are indicated.
Twórcy
autor
  • Gdynia Maritime University, Gdynia, Poland
Bibliografia
  • 1. Ameljańczyk, A.: Optymalizacja wielokryterialna. WAT, Warszawa (1986).
  • 2. Balraj, U.S.: Mathematical modeling and multicriteria optimization of rotary electrical discharge machining process. J. Phys.: Conf. Ser. 662, 012023
  • (2015). https://doi.org/10.1088/1742-6596/662/1/012023.
  • 3. Bentham, J.: An Introduction to the Principles of Morals and Legislation. (1789).
  • 4. Białaszewski, T.: Wielokryterialna optymalizacja parametryczna układów z zastosowaniem algorytmów ewolucyjnych. Pomorskie Wydawnictwo Naukowo-Techniczne, Gdańsk (2007).
  • 5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004). https://doi.org/10.1017/CBO9780511804441.
  • 6. Charnes, A., Cooper, W.W.: Goal programming and multiple objective optimizations: Part 1. European Journal of Operational Research. 1, 1, 39–54 (1977). https://doi.org/10.1016/S03772217(77)81007-2.
  • 7. Cotton, S., Maler, O., Legriel, J., Saidi, S.: Multicriteria optimization for mapping programs to multi-processors. In: 2011 6th IEEE International Symposium on Industrial and Embedded Systems. pp. 9–17 (2011). https://doi.org/10.1109/SIES.2011.5953650.
  • 8. Craft, D.: Multi-criteria optimization methods in radiation therapy planning: a review of technologies and directions. arXiv:1305.1546 (2013).
  • 9. Das, I., Dennis, J.E.: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Structural optimization. 14, 1, 63–69 (1997). https://doi.org/10.1007/BF01197559.
  • 10. Ding, H., Liu, K., Chen, X., Xiong, L., Tang, G., Qiu, F., Strobl, J.: Optimized Segmentation Based on the Weighted Aggregation Method for Loess Bank Gully Mapping. Remote Sensing. 12, 5, (2020). https://doi.org/10.3390/rs12050793.
  • 11. Ehrgott, M.: Multicriteria Optimization. Springer-Verlag, Berlin Heidelberg (2005). https://doi.org/10.1007/3-540-27659-9.
  • 12. Eschenauer, H., Koski, J., Osyczka, A. eds: Multicriteria Design Optimization: Procedures and Applications. Springer-Verlag, Berlin Heidelberg (1990). https://doi.org/10.1007/978-3-642-48697-5.
  • 13. Galas, Z., Nykowski, I.: Zbiór zadań z programowania matematycznego. Państwowe Wydawnictwo Naukowe, Warszawa (1986).
  • 14. Gandibleux, X. ed: Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. Springer US (2002). https://doi.org/10.1007/b101915.
  • 15. Gerasimor, E.N., Repko, V.N.: Multi-criteria optimization. Journal of Applied Mechanics. 14, 1179–1184 (1978).
  • 16. Glavač, M., Ren, Z.: Multicriterial optimization of a car structure using a finite-element method. Strojniški vestnik - Journal of Mechanical Engineering. 53, 10, 2007 (2017).
  • 17. Gutjahr, W.J., Nolz, P.C.: Multicriteria optimization in humanitarian aid. European Journal of Operational Research. 252, 2, 351–366 (2016). https://doi.org/10.1016/j.ejor.2015.12.035.
  • 18. Himes, Y.Y., Lasdon, L., Wismer, D.: On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization. IEEE Transactions on Systems, Man, and Cybernetics. SMC-1, 3, 296–297 (1971). https://doi.org/10.1109/TSMC.1971.4308298.
  • 19. Hirsch, P., Duzinkiewicz, K., Grochowski, M.: Multicriteria optimization approach to design and operation of district heating supply system over its life cycle. Presented at the International Conference on Advances in Energy Systems and Environmental Engineering (ASEE17) , Wroclaw, Poland (2017). https://doi.org/10.1051/e3sconf/20172200065.
  • 20. Kaliszewski, I.: Wielokryterialne Podejmowanie Decyzji - Obliczenia Miękkie dla Złożonych Problemów Decyzyjnych. Wydawnictwa Naukowo Techniczne (2008).
  • 21. Karleuša, B., Hajdinger, A., Tadić, L.: The Application of Multi-Criteria Analysis Methods for the Determination of Priorities in the Implementation of Irrigation Plans. Water. 11, 3, (2019). https://doi.org/10.3390/w11030501.
  • 22. Kazimierski, W., Stateczny, A.: Fusion of data from AIS and tracking radar for the needs of ECDIS. In: 2013 Signal Processing Symposium (SPS). pp. 1–6 (2013). https://doi.org/10.1109/SPS.2013.6623592.
  • 23. Kim, I.Y., de Weck, O.L.: Adaptive weighted-sum method for bi-objective optimization: Pareto front generation. Structural and Multidisciplinary Optimization. 29, 2, 149–158 (2005). https://doi.org/10.1007/s00158-004-0465-1.
  • 24. Köksalan, M., Wallenius, J., Zionts, S.: An Early History of Multiple Criteria Decision Making. Journal of Multi-Criteria Decision Analysis. 20, 1– 2, 87–94 (2013). https://doi.org/10.1002/mcda.1481.
  • 25. Kula, K.S.: Automatic Control of Ship Motion Conducting Search in Open Waters. Polish Maritime Research. 27, 4, 157–169 (2020). https://doi.org/10.2478/pomr-2020-0076.
  • 26. Lazarowska, A.: A new deterministic approach in a decision support system for ship’s trajectory planning. Expert Systems with Applications. 71, 469–478 (2017). https://doi.org/10.1016/j.eswa.2016.11.005.
  • 27. Lazarowska, A.: Multi-criteria trajectory base path planning algorithm for a moving object in a dynamic environment. In: 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA). pp. 79–83 (2017). https://doi.org/10.1109/INISTA.2017.8001136.
  • 28. Lebkowski, A.: Design of an Autonomous Transport System for Coastal Areas. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. 12, 1, 117–124 (2018). https://doi.org/10.12716/1001.12.01.13
  • 29. Legriel, J.: Multicriteria optimization and its application to multi-processor embedded systems. Grenoble University (2011).
  • 30. Lindfield, G., Penny, J.: Numerical Methods: Using MATLAB. Academic Press (2012).
  • 31. Lisowski, J.: Game Control Methods Comparison when Avoiding Collisions with Multiple Objects Using Radar Remote Sensing. Remote Sensing. 12, 10, (2020). https://doi.org/10.3390/rs12101573.
  • 32. Lisowski, J.: The Optimal and Safe Ship Trajectories for Different Forms of Neural State Constraints. Solid State Phenomena. 180, 64–69 (2012). https://doi.org/10.4028/www.scientific.net/SSP.180.64.
  • 33. Lisowski, J., Mohamed-Seghir, M.: Comparison of Computational Intelligence Methods Based on Fuzzy Sets and Game Theory in the Synthesis of Safe Ship Control Based on Information from a Radar ARPA System. Remote Sensing. 11, 1, (2019). https://doi.org/10.3390/rs11010082.
  • 34. Maniowski, M.: Multi-criteria optimization of chassis parameters of Nissan 200 SX for drifting competitions. IOP Conference Series: Materials Science and Engineering. 148, 012019 (2016). https://doi.org/10.1088/1757-899x/148/1/012019.
  • 35. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization. 26, 6, 369–395 (2004). https://doi.org/10.1007/s00158-003-0368-6.
  • 36. Marler, R.T., Arora, J.S.: The weighted sum method for multi-objective optimization: new insights. Structural and Multidisciplinary Optimization. 41, 6, 853–862 (2010). https://doi.org/10.1007/s00158009-0460-7.
  • 37. Messac, A., Mattson, C.A.: Generating WellDistributed Sets of Pareto Points for Engineering Design Using Physical Programming. Optimization and Engineering. 3, 4, 431–450 (2002). https://doi.org/10.1023/A:1021179727569.
  • 38. Messac, A., Puemi-Sukam, C., Melachrinoudis, E.: Aggregate Objective Functions and Pareto Frontiers: Required Relationships and Practical Implications. Optimization and Engineering. 1, 2, 171–188 (2000). https://doi.org/10.1023/A:1010035730904.
  • 39. Miller, A., Rybczak, M., Rak, A.: Towards the Autonomy: Control Systems for the Ship in Confined and Open Waters. Sensors. 21, 7, (2021). https://doi.org/10.3390/s21072286.
  • 40. Odu, G.O., Charles-Owaba, O.E.: Review of Multicriteria Optimization Methods – Theory and Applications. IOSR Journal of Engineering. 3, 10, 01–14 (2013). https://doi.org/10.9790/3021031020114.
  • 41. Paulovičová, L.: Multi-Criteria Optimization and its Application to Earthwork Processes. Advanced Materials Research. 1020, 883–887 (2014). https://doi.org/10.4028/www.scientific.net/AMR.10 20.883.
  • 42. Płonka, S.: Wielokryterialna optymalizacja procesów wytwarzania części maszyn. Wydawnictwo Naukowe PWN, Warszawa (2017).
  • 43. Pohekar, S.D., Ramachandran, M.: Application of multi-criteria decision making to sustainable energy planning—A review. Renewable and Sustainable Energy Reviews. 8, 4, 365–381 (2004). https://doi.org/10.1016/j.rser.2003.12.007.
  • 44. Rawls, J.: A Theory of Justice. Belknap Press (1971).
  • 45. Romero, C.: Multi-Objective and GoalProgramming Approaches as a Distance Function Model. null. 36, 3, 249–251 (1985). https://doi.org/10.1057/jors.1985.43.
  • 46. Romero, C., Tamiz, M., Jones, D.F.: Goal programming, compromise programming and reference point method formulations: linkages and utility interpretations. Journal of the Operational Research Society. 49, 9, 986–991 (1998). https://doi.org/10.1057/palgrave.jors.2600611.
  • 47. Roy, B.: Wielokryterialne wspomaganie decyzji. WNT, Warszawa (1990).
  • 48. Salukvadze, M.E., Trishkin, V.Ya.: Optimization of vector functionals II. The analysis construction of optimal controls. Automation and Remote Control. 32, 1347–1357 (1971).
  • 49. Stadler, W.: A survey of multicriteria optimization or the vector maximum problem, part I: 1776–1960. Journal of Optimization Theory and Applications. 29, 1, 1–52 (1979). https://doi.org/10.1007/BF00932634.
  • 50. Stadler, W. ed: Multicriteria Optimization in Engineering and in the Sciences. Springer US (1988). https://doi.org/10.1007/978-1-4899-3734-6.
  • 51. Stateczny, A., Burdziakowski, P.: Universal Autonomous Control and Management System for Multipurpose Unmanned Surface Vessel. Polish Maritime Research. 26, 1, 30–39 (2019). https://doi.org/10.2478/pomr-2019-0004.
  • 52. Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation, and Application. Wiley (1986).
  • 53. Swain, S.C., Panda, S., Mahapatra, S.: A multicriteria optimization technique for SSSC based power oscillation damping controller design. Ain Shams Engineering Journal. 7, 2, 553–565 (2016). https://doi.org/10.1016/j.asej.2015.05.017.
  • 54. Szlapczynski, R., Szlapczynska, J.: An analysis of domain-based ship collision risk parameters. Ocean Engineering. 126, 47–56 (2016). https://doi.org/10.1016/j.oceaneng.2016.08.030.
  • 55. Tahvili, S.: Multi-Criteria Optimization of System Integration Testing. Mälardalen University (2018).
  • 56. Tamiz, M., Jones, D., Romero, C.: Goal programming for decision making: An overview of the current state-of-the-art. European Journal of Operational Research. 111, 3, 569–581 (1998). https://doi.org/10.1016/S0377-2217(97)00317-2.
  • 57. Tomera, M.: A multivariable low speed controller for a ship autopilot with experimental results. In: 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR). pp. 17–22 (2015). https://doi.org/10.1109/MMAR.2015.7283699.
  • 58. Wierzbicki, A.P.: On the completeness and constructiveness of parametric characterizations to vector optimization problems. OperationsResearch-Spektrum. 8, 2, 73–87 (1986). https://doi.org/10.1007/BF01719738.
  • 59. Wierzbicki, A.P.: The problem of objective ranking: foundations, approaches and applications. Journal of Telecommunications and Information Technology. 3, 15–23 (2008).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09a419ca-2845-4c69-a203-cbdf6386184f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.