Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The primary aim of the present study was to compare the bileaflet and trileaflet aortic valves’ performance during uniform blood flow model and boundary conditions. The secondary aim of the study was to determine the effect of Newtonian/non-Newtonian fluid flow assumption on blood flow directly behind the trileaflet valve. Methods: The geometrical model of the whole system consist of the left ventricle, fragment of the aorta and mechanical valves. A representation of pulsatile flow was obtained by measuring blood flow velocity (Doppler ultrasound examination). We have assumed turbulent blood flow. We considered two blood models, Newtonian and non-Newtonian (Carreau model). The valves’ performance was assessed using the reduced stress in the valves, the shear stress in the aortic wall, flow velocity field and the effective orifice area. Results: The maximum von Mises stress for the bileaflet valve leaflets was 0.3 MPa and for the trileaflet valve – 0.06 MPa. The maximum flow velocity for the bileaflet valve was 4.52 m/s for 40° and for the trileaflet valve – 5.74 m/s. Higher shear stress was present in the bileaflet (151.5 Pa) than for the trileaflet valve (49.64 Pa). Conclusions: The results indicate that central blood jet for the trileaflet valve contributes to more physiological blood flow and decreases the risk of haemolysis. The central flow minimises the risk of leaflet dislocation. In addition, lower stresses extend the durability of the valve. However, the trileaflet valve geometry has also disadvantages, for instance, small peripheral streams or relatively low effective orifice area.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
141--152
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
- Warsaw University of Technology.
autor
- Warsaw University of Technology.
Bibliografia
- [1] ABBAS S.S., NASIF M.S., AL-WAKED R., SAID M.A.M., Numerical investigation on the effect of bileaflet mechanical heart valve’s implantation tilting angle and aortic root geometry on intermittent regurgitation and platelet activation, Artif. Organs, 2020, 44 (2), E20–E39.
- [2] ALI A., KAZMI R., High performance simulation of blood flow pattern and transportation of magnetic nanoparticles in capillaries, Intell. Technol. Appl., 2020, 1198, 222–236.
- [3] AMINDARI A., KIRKKÖPRÜ K., SALTIK İL., SÜNBÜLOĞLU E., Effect of non-linear leaflet material properties on aortic valve dynamics – A coupled fluid-structure approach, Eng. Solid. Mech., 2021, 9 (2), 123–136.
- [4] AMINDARI A., SALTIK L., KIRKKOPRU K., YACOUB M., YALCIN H.C., Assessment of calcified aortic valve leaflet deformations and blood flow dynamics using fluid-structure interaction modeling, Inform. Med. Unlocked, 2017, 9, 191–199.
- [5] BAILOOR S., SEO J.-H., DASI L., SCHENA S., MITTAL R., A computational study of the hemodynamics of bioprosthetic aortic valves with reduced leaflet motion, J. Biomech., 2021, 120 (21), 110350.
- [6] BELKHIRI K., BOUMEDDANE B., A Cartesian grid generation technique for 2-D non-Newtonian blood flow through a bileaflet mechanical heart valve, Int. J. Comput. Methods Eng., 2021, 22 (4), 297–315.
- [7] BRUECKER C., LI Q., Possible early generation of physiological helical flow could benefit the triflo trileaflet heart valve prosthesis compared to bileaflet valves, Bioeng., 2020, 7 (4), 1–16.
- [8] CARREL T., DEMBITSKY W.P., DE MOL B., OBRIST D., DREYFUS G., MEURIS B., VENNEMANN B., LAPEYRE D., SCHAFF H., Non-physiologic closing of bi-leaflet mechanical heart prostheses requires a new tri-leaflet valve design, Int. J. Cardiol., 2020, 304, 125–127.
- [9] CLAIBORNE T.E., XENOS M., SHERIFF J., CHIU W-C., SOARES J., ALEMU Y., GUPTA S., JUDEX S., SLEPIAN M.J., BLUESTEIN D., Towards optimization of a novel trileaflet polymeric prosthetic heart valve via device thrombogenicity emulation (DTE), ASAIO, 2013, 59 (3), 275–283.
- [10] DIJKMAN P.E., FIORETTA E.S., FRESE L., PASQUALINI F.S., HOERSTRUP S.P., Heart valve replacements with regenerative capacity, Transfus. Med. Hemoth., 2016, 43 (4), 282–290.
- [11] FRIES R., GRAETER T., AICHER D., REUL H., SCHMITZ C., BÖHM M., SCHÄFERS H.J., In vitro comparison of aortic valve movement after valve-preserving aortic replacement, J. Thorac. Cardiovasc. Surg., 2006, 132 (1), 32–37.
- [12] GE L., DASI L.P., SOTIROPOULOS F., YOGANATHAN A.P., Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. Viscous Stresses, Ann. Biomed. Eng., 2008, 36 (2), 276–297.
- [13] GILMANOV A., SOTIROPOULOS F., Comparative hemodynamics in an aorta with bicuspid and trileaflet valves, Theor. Comput. Fluid Dyn., 2016, 30, 67–85.
- [14] HANAFIZADEH P., MIRKHANI N., DAVOUDI M.R., MASOUMINIA M., SADEGHY K., Non-Newtonian blood flow simulation of diastolic phase in bileaflet mechanical heart valve implanted in a realistic aortic root containing coronary arteries, Artif. Organs, 2016, 40 (10), E179–E191.
- [15] HUI S., MAHMOOD F., MATYAL R., Aortic valve area-technical communication: continuity and Gorlin equations revisited, J. Cardiothorac. Vasc. Anesth., 2018, 32 (6), 2599–2606.
- [16] KIM W., CHOI H., KWEON J., YANG D.H., KIM Y.-H., Effects of pannus formation on the flow around a bileaflet mechanical heart valve, PLoS ONE, 2020, 15 (6), e0234341.
- [17] KUAN Y.H., KABINEJADIAN F., NGUYEN V.-T., SU B., YOGANATHAN A.P., LEO H.L., Comparison of hinge microflow fields of bileaflet mechanical heart valves implanted in different sinus shape and downstream geometry, Comput. Methods in Biomech. Biomed. Engin., 2015, 18 (16), 1785–1796.
- [18] KUAN Y.H., NGUYEN V.-T., KABINEJADIAN F., LEO H.L., Computational hemodynamic investigation of bileaflet and trileaflet mechanical heart valves, J. Heart Valve Dis., 2015, 24 (3), 393–403.
- [19] KWON Y.J., Numerical analysis for the structural strength comparison of St. Jude Medical and Edwards MIRA bileaflet mechanical heart valve prostheses, J. Mech. Sci. Technol., 2010, 24 (2), 461–469.
- [20] LI C.-P., CHEN S.-F., LO C.-W., LU P.-C., Turbulence characteristics downstream of a new trileaflet mechanical heart valve, Biomed. Eng., 2011, 57 (3), 188–196.
- [21] MAO W., CABALLERO A., MCKAY R., PRIMIANO C., SUN W., Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model, PLoS ONE, 2017, 12 (9), e0184729.
- [22] MAZZITELLI R., BOYLE F., MURPHY E., RENZULLI A., FRAGOMENI G., Numerical prediction of the effect of aortic Left Ventricular Assist Device outflow-graft anastomosis location, Biocybern. Biomed. Eng., 2016, 36 (2), 327–343.
- [23] NASIF M.S., KADHIM S.K., AL-KAYIEM H.H., AL-WAKED R., Using one way fluid structure interaction coupling to investigate the effect of blood flow on the bileaflet mechanical heart valve structure, ARPN J. Eng. Appl. Sci., 2016, 11 (20), 11971–11974.
- [24] PIATTI F., STURLA F., MAROM G., SHERIFF J., CLAIBORNE T.E., SLEPIAN M.J., REDAELLI A., BLUESTEIN D., Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid–structure interaction approach, J. Biomech., 2015, 48 (13), 3641–3649.
- [25] QIAN J.-Y., GAO Z.-X., LI W.-Q., JIN Z.-J., Cavitation suppression of bileaflet mechanical heart valves, Cardiovasc. Eng. Technol., 2020, 11, 783–794.
- [26] SAMPAIO RODRIGUES L.T., SILVA L.C., MACHADO L.C., GRECO M., GELAPE C.L., Simulations of artificial biological heart valves with ANSYS, Esss Comput. Model. Chall., 2016, 10.13140/RG.2.1.3146.7925.
- [27] SARI M., BAYRAM Z., AYTURK M., BAYAM E., KALKAN S., GUNER A., KALCIK M., GURSOY M.O., GUNDUZ S., OZKAN M., Characteristic localization patterns of thrombus on various brands of bileaflet mitral mechanical heart valves as assessed by three-dimensional transesophageal echocardiography and their relationship with thromboembolism, Int. J. Card. Imaging, 2021, 37 (9), 2691–2705.
- [28] SCHALLER T., SCHARFSCHWERDT M., SCHUBERT K., PRINZ C., LEMBKE U., SIEVERS H.-H., Aortic valve replacement in sheep with a novel trileaflet mechanical heart valve prosthesis without anticoagulation, J. Thorac. Cardiovasc. Surg., 2021, 7, 76-88.
- [29] SHIBESHI S.S., VOLLINS W.E., The rheology of blood flow in a branched arterial system, Appl. Rheol., 2005, 15 (6), 398–405.
- [30] SIEVERS H.H., SCHUBERT K., JAMALI A., SCHARFSCHWERDT M., The influence of different inflow configurations on computational fluid dynamics in a novel three-leaflet mechanical heart valve prosthesis, Interact. Cardiovasc. Thorac. Surg., 2018, 27 (4), 475–480.
- [31] SMADI O., HASSAN I., PIBAROT P., KADEM L., Numerical and experimental investigations of pulsatile blood flow pattern through a dysfunctional mechanical heart valve, J. Biomech., 2010, 43 (8), 1565–1572.
- [32] SUNDSTRÖM E., JONNAGIRI R., GUTMARK-LITTLE I., GUTMARK E., CRITSER P., TAYLOR M.D., TRETTER J.T., Hemodynamics and tissue biomechanics of the thoracic aorta with a trileaflet aortic valve at different phases of valve opening, Int. J. Numer. Method. Biomed. Eng., 2020, 36 (7), 1–14.
- [33] TYFA Z., OBIDOWSKI D., REOROWICZ P., STEFAŃCZYK L., FORTUNIAK J., JÓŹWIK K., Numerical simulations of the pulsatile blood flow in the different types of arterial fenestrations: Comparable analysis of multiple vascular geometries, Biocybern. Biomed. Eng., 2018, 38 (2), 228–242.
- [34] XU X., LIU T., LI C., ZHU L., LI S., A numerical analysis of pressure pulsation characteristics induced by unsteady blood flow in a bileaflet mechanical heart valve, Processes, 2019, 7 (4), 232.
- [35] YUN B.M., WU J., SIMON H.A., ARJUNON S., SOTIROPOULOS F., AIDUN C.K., YOGANATHAN A.P., A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakag
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-099c725f-2888-4555-ac9c-87c44f9ce961