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Abstract 

Space-time variational methods differ from time-stepping schemes by discretising the whole space-time domain with 

finite elements. This offers a natural framework for flow problems in moving domains and allows simultaneous parallelisa-

tion and adaptivity in space and time. For incompressible flows, the usual approach is to employ the same polynomial order 

for velocity and pressure, which requires the use of stabilisation techniques to compensate for the inf-sup deficiency of such 

pairs. In the present work, we extend to the space-time formulation the idea of the popular Taylor-Hood element for the 

(Navier-)Stokes equations. By using quadratic interpolation for velocities and linear for pressure, in both space and time, 

we attain a stable finite element method which provides optimal convergence for pressure, velocity and stresses. 
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1. INTRODUCTION 

In variational formulations for time-dependent 

flow problems, the time interval and the spatial do-

main are typically treated in very different manners. 

The most popular approach is the method of lines 

(Marx, 1994; Dettmer & Peric, 2003): a finite ele-

ment/volume discretisation in space, followed by a fi-

nite difference or Runge-Kutta discretisation in time. 

Despite simple in design, those methods have a seri-

ous limitation, namely, the requirement of uniform-

in-space time steps. This means that a temporal re-

finement that would perhaps be needed only locally 

is instead applied to the entire spatial domain, thereby 

unnecessarily increasing the global number of de-

grees of freedom. In that context, space-time methods 

aim to overcome the limitations of time-marching 

schemes by offering a unified approach where time 

and space are treated in an equal – or at least similar 

– manner. 

The vast majority of works dealing with space-

time finite element methods for fluid flows employ a 

discontinuous Galerkin (DG) method in time (e.g., 

Behr & Tezduyar, 1994; Behr, 2001; Behr et al., 

2006; Neumüller & Steinbach, 2011; Pauli & Behr, 

2017; van der Vegt & Sudirham, 2008). This allows 

sequential solution procedures where the space-time 

domain is divided in the time direction into slabs: the 

solution obtained in the first (initial) time slab is 

weakly transmitted onto the second one, and so on. 

The main shortcomings of such DG methods are the 

increased number of degrees of freedom and the need 

for looping on internal faces. In the present work, 

however, we employ a continuous finite element dis-

cretisation in both space and time. The idea is to allow 

for fully unstructured space-time meshes, thereby en-

abling adaptive refinement strategies simultaneously 
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in space and time, as well as parallel solution strate-

gies. At the present stage, however, we still consider 

structured meshes as a proof of concept. 

To the best of the authors’ knowledge, all works 

published in space-time finite elements for fluid flows 

employ stabilised methods, i.e., introducing addi-

tional terms into the variational formulation in order 

to compensate for the use of inf-sup-deficient veloc-

ity-pressure pairs. In this work, we propose a stable 

mixed space-time finite element method for the (Na-

vier-)Stokes system by extending the idea of Taylor-

Hood elements to the space-time setting. Numerical 

results reveal stability and optimal convergence rates 

for pressure, velocity, and stresses.  

2. FORMULATION 

As a model problem, we consider the homogene-

ous Dirichlet case for the incompressible Navier-

Stokes problem in a time interval (0,T) and a bounded 

Lipschitz spatial domain  C d, d = 2 or 3: 
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where u is the flow velocity, p is the pressure, g is a 

volumetric force, R is the Reynolds number and Q≔ 

×(0,T) is the space-time domain. Our space-time 

variational formulation reads: Given g ∈ Z', find (u,p) 

∈ X×Y such that: 
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is satisfied for all (v,q) ∈ Z×Y, with the spaces being 

Y = L2(Q),  Z = [L2(0,T; 1

0H (Ω))]d and X = {w∈Z ∶ ∂tw 

∈[L2(0,T;H-1(Ω))]d  and w
0t

= 0}. The integral added 

to the incompressibility equation enforces the scaling 

dp


  = 0 for all t.  

Although the continuous formulation is of Petrov-

Galerkin type, in the discrete case we follow a stand-

ard Bubnov-Galerkin approach with the same glob-

ally continuous trial and test functions. The space-

time domain is discretised with prismatic elements, 

that is, we have an arbitrary simplicial mesh in space 

which is extruded in the time direction. In order to 

obtain stability, we introduce space-time Taylor-

Hood elements: globally continuous second- and 

first-order interpolations – in both space and time – 

for velocity and pressure, respectively. Figure 1 illus-

trates such an element for d = 2. 

 

Fig. 1. Prismatic space-time Taylor-Hood element for two spatial 
dimensions (d=2). 

3. NUMERICAL EXAMPLES 

In order to allow computation of approximation 

errors, we tackle problems with known analytical so-

lutions. The pressure scaling integral in equation (2) 

is replaced by  
0

d

T

qp t   0x
, which enforces p = 0 at 

x = 0 for all t. This is possible since we are using finite 

element decompositions in which (qp)
0x

 is well de-

fined. 

For the two-dimensional examples, we consider 

the initial mesh shown in figure 2 (left), and four con-

secutive uniformly refined meshes, the finest of 

which can be seen in figure 2 (right). For the three-

dimensional case, the spatial domain is discretised 

into tetrahedra, and the space-time elements are con-

structed by extruding the spatial mesh in time, re-

specting the polynomial orders of the Taylor-Hood 

space. Since d = 3 leads to a four-dimensional prob-

lem, and, on top of that, introduces an additional ve-

locity component, the number of degrees of freedom 

in the system grows rapidly with every refinement 
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Fig. 2. Coarsest and finest space-time meshes used for the two-dimensional examples. 

step. Therefore, we consider only three consecutive 

meshes for this example. The coarsest one has 192 el-

ements and is constructed from the spatial mesh 

shown in figure 3, with the time interval divided uni-

formly into two. The finest mesh considered has 

49152 elements. The next refinement level would 

have 786432 elements and 7.5 million degrees of 

freedom, which exceeds the memory limitations of 

the hardware used (2x Xeon® E5-2630 v3, 16x2.40 

GHz, 256 GB DDR4 RAM). 

 

Fig. 3. Coarsest spatial mesh used in the three-dimensional 

numerical example. 

 

3.1. Stokes equations in two dimensions 

As a first example, we consider the Stokes system 

in Q = (0,1)3, R = 1, homogeneous Dirichlet boundary 

conditions and body force g = gt + gx + gp, with: 
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The corresponding analytical solution is: 
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The error results are shown in figure 4 and reveal 

important aspects of the space-time Taylor-Hood ele-

ment. First, the pressure can be seen to converge op-

timally, that is, quadratically in the L2(Q)-norm. As 

for the velocity, we observe an interesting behaviour: 

second-order convergence of the spatial gradient, and 

first-order convergence of the temporal gradient. A 

priori error estimates in 1,0H (Q)≔ L2(0,T;H1 (Ω)) fol-

low as in (Steinbach, 2015); error estimates in H2,1(Q) 
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for globally quasi-uniform meshes follow by using an 

approximation property in H2,1(Q) and an inverse in-

equality. 

Not only from the theoretical point of view, but 

also from a practical standpoint, these convergence 

orders can be seen as optimal. Firstly, because all the 

linear terms of the strong residual of the momentum 

equation, namely ∂t u, R-1 Δxu and ∇xp, shall converge 

with the same order. The computation of the ele-

mentwise strong residual is necessary, for instance, in 

the stabilisation of convection-dominated Navier-

Stokes flows. Secondly, p and ∇xu converging quad-

ratically leads to quadratic convergence of the Cau-

chy stress tensor, which is of critical importance in 

practical applications such as hemodynamics and 

fluid-structure interaction. Furthermore, since ∂tu 

represents just an acceleration and is not used in most 

applications, its “low-order” convergence has no neg-

ative impact on the method. 

 

Fig. 4. Convergence plot for two-dimensional Stokes considering 

uniform refinement. 

3.2. Navier-Stokes equations in two dimensions 

As a second numerical example we consider the 

Taylor-Green vortex, which is a classical benchmark 

case for transient Navier-Stokes computations. In the 

unit space-time cube Q = (0,1)3 and with g = 0, the 

analytical solution is: 
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where:   F(t) = 
22

exp
t

R

 
 
 

. Figure 5 shows the error 

plot for R = 100. The pressure converges quadrati-

cally, as expected, and so does the velocity in the 

H1(Q) semi-norm. In this case, also the temporal gra-

dient of u is converging quadratically, which is higher 

than expected. 

 

Fig. 5. Convergence plot for the Taylor-Green problem 
considering uniform refinement. 

3.3. Stokes equations in three dimensions 

We now tackle a spatially three-dimensional 

problem, meaning four dimensions in the space-time 

setting. The Stokes system is considered in the unit 

hypercube Q = (0,1)4 and with R = 1, homogeneous 

Dirichlet boundary conditions and body force g = gt + 

gx + gp, with: 
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The error plot in figure 6 reveals a similar conver-

gence behaviour as in the two-dimensional case. 

 

Fig. 6. Convergence plot for three-dimensional Stokes 
considering uniform refinement. 

4. CONCLUDING REMARKS 

In this work we have presented a stable space-

time finite element formulation for the incompressi-

ble Navier-Stokes equations. By extending to the 

space-time setting the idea of compatible polynomial 

orders from the Taylor-Hood element, we attain a sta-

ble mixed finite element scheme that does not require 

any stabilisation techniques for diffusion-dominated 

problems and yields optimally convergent solutions. 

We have further presented numerical examples in two 

and three dimensions, demonstrating optimal conver-

gence orders. A more detailed numerical analysis 

must be done to prove stability of the proposed 

scheme, and to derive optimal error estimates as ex-

perienced in the numerical examples. This includes, 

in addition to the prismatic space-time Taylor-Hood 

elements, the use of simplicial elements in the space-

time domain. In order to derive adaptive mesh refine-

ment, we may use appropriate a posteriori residual-

based error estimators. For an efficient solution of the 

resulting large-scale algebraic systems, it is crucial to 

employ parallel strategies such as domain decompo-

sition and “parareal in time” methods (Fischer et. al., 

2005). The combination of all these techniques will 

result in more efficient simulation tools (Steinbach & 

Yang, 2019) to handle today’s challenging problems 

– not only in fluid mechanics.  
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CZASO-PRZESTRZENNE ELEMENTY TYLORA-

HOODA DLA NIEŚCIŚLIWYCH PRZEPŁYWÓW 

Streszczenie 

Przestrzenno-czasowe metody wariacyjne wymagają dyskretyza-

cji metodą elementów skończonych całej domeny przestrzenno 

czasowej i tym różnią się od metod wykorzystującej schematy 

kroków czasowych. To podejście dostarcza naturalnych struktur 

dla problemów przepływu w poruszających się obszarach i po-

zwala na równoczesne zrównoleglanie i adaptację zarówno w 

przestrzeni jak i w czasie. Typowym rozwiązaniem dla przepły-

wów nieściśliwych jest zastosowanie tego samego stopnia wielo-

mianu dla prędkości i ciśnienia, co wymaga wprowadzenia metod 

stabilizacji w celu skompensowania niedoboru infimum-supre-

mum takich par. W niniejszej pracy rozszerzono sformułowanie 

przestrzenno czasowe o ideę elementu Taylora-Hooda dla równań 

(Naviera-)Stokesa. Poprzez zastosowanie kwadratowej interpola-

cji dla prędkości i liniowej interpolacji dla ciśnienia, zarówno w 

przstrzeni jak i w czasie, uzyskano stabilną metodę elementów 

skończonych dającą optymalną zbieżność dla ciśnienia, prędkości 

i naprężeń.  
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