PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A thermodynamic study on catalytic decomposition of hydrazine in a space thruster

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most satellites stationed in space use catalytic propulsion systems for attitude control and orbit adjustment. Hydrazine is consumed extensively as liquid monopropellant, in the thrusters. Catalytic reactor is the most important section in the catalytic thruster. Ammonia and nitrogen gases are produced as a result of complete catalytic decomposition of hydrazine in the reactor, causing an increase in temperature and a rise in specific impulse. Ammonia is subsequently decomposed, leading to nitrogen and hydrogen gases. Decomposition of ammonia leads to a decrease in temperature, molecular weight and specific impulse. The latter phenomenon is unavoidable. The effect of ammonia decomposition on the reactor temperature, molecular weight of gaseous products and conclusively on specific impulse was studied in this article. At adiabatic state, thermodynamic analysis revealed that the maximum and minimum temperatures were 1655 K and 773 K, respectively. The highest molecular weight was obtained at ammonia conversion of zero and the lowest when ammonia conversion was 100%. The maximum specific impulse (305.4 S) was obtained at ammonia conversion of zero and completely conversion of ammonia, the minimum specific impulse (about 213.7 s) was obtained. For specific impulse, the result of thermodynamic calculation in this work was validated by the empirical results.
Rocznik
Strony
151--166
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr., wz.
Twórcy
  • Malek Ashtar University of Technology, Iran
  • Malek Ashtar University of Technology, Iran
  • Malek Ashtar University of Technology, Iran
Bibliografia
  • [1] Li L., Wang X., Zhao X., Zheng M., Cheng R., Zhou L., Zhang T.: Microcalorimetric studies of the iridium catalyst for hydrazine decomposition reaction. Thermochimica Acta 434(2005), 1-2, 119–124.
  • [2] Sutton G.P., Biblarz O.: Rocket Propulsion Elements (8th Edn.). Wiley & Sons, New York 2010.
  • [3] Eckert E.W.: Hydrazine and its Derivatives (8th Edn.). Wiley & Sons, New York 2001.
  • [4] Brown C.D.: Spacecraft Propulsion. AIAA, Washington 1995.
  • [5] Cho S.J., Lee J., Lee Y.S., Kim D.P.: Characterization of iridium catalyst for decomposition of hydrazine hydrate for hydrogen generation. Catal. Lett. 109(2006), 3-4, 181–186.
  • [6] Zheng M., Chen X., Cheng R., Li N., Sun J., Wang X., Zhang T.: Catalytic decomposition of hydrazine on iron nitride catalysts. Catal. Commun. 7(2006), 3, 187–191.
  • [7] Agrawal J.P.: High Energy Materials: Propellants, Explosives and Pyrotechnics. Wiley-VCH, Weinheim 2010.
  • [8] de Medeiros J.E., Valenca G.P.: Kinetic analysis of the catalytic decomposition of hydrazine. Braz. J. Chem. Eng. 15(1998), 2, 1–8.
  • [9] Smith O.I., Solomon W.C.: Kinetics of Hydrazine Decomposition on Iridium and Alumina Supported Iridium Catalysts. AFRPL-TR-73-59, Edwards 1973.
  • [10] Sayer C.F.: The heterogeneous decomposition of hydrazine. Part 5. The kinetics of the decomposition of liquid hyrazine on a supported ruthenium catalyst. Rocket Prop. Establ. 72(1972), 1–26.
  • [11] Khomenko A., Apelbaum L.O.: Study of the kinetics of the catalytic decomposition of hydrazine vapors on paladium. Kinet. Catal. 17(1976), 600–607.
  • [12] Pakdehi S.G., Salimi M., Rasoolzadeh M.: A review on decomposition of hydrazine and its kinetics as a novel approach for CO-free H2 production. Res. Appl. Mech. Eng. (RAME) 3(2014), 21–25.
  • [13] Williams P.H.: Modification of Shell 405 Catalyst. AFRPL-TR-72-7, Edwards 1972.
  • [14] Armstrong W.E., La France D.S., Voge H.H.: Hydrazine decomposition and other reactions. United States patent US 4122671, 1978.
  • [15] Balcon S., Mary S., Kappenstein C., Gengembre E.: Monopropellant decomposition catalysts II. Sintering studies on Ir/Al2O3 catalysts, influence of chloride anions. Appl. Catal. A 196(2000), 2, 179–190.
  • [16] Fan C., Wu T., Kaden W.E., Anderson S.L.: Cluster size effects on hydrazine decomposition on Irn/Al2O3/NiAl(110). Surf. Sci. 600(2006), 2, 461–467.
  • [17] Yu M.-J., Lee K.-H., Kim S.-K., Choi J.-M., Cho S.-J.: Method of manufacturing high-crush-strength iridium catalyst for hydrazine decomposition reaction in spacecraft thrusters using bauxite. United States patent US 7651972 B2, 2010.
  • [18] Thunnissen D., Engelbrecht C., Weiss J.: Assessing model uncertainty in the conceptual design of a monopropellant propulsion system. In: Proc. 39th AIAA/ASME/SAE/ASEE Joint Propul. Conf. Exhibit, 2003, Huntsville, 1–17.
  • [19] Rocket Research Company: Development of Design and Scaling Criteria for Monopropellant Hydrazine Reactors Employing Shell 405 Spontaneous Catalyst: Vol II. RRC-66-R-76, 1967.
  • [20] Grant Jr. A.F.: Basic Factors Involved in the Design and Operation of Catalytic Monopropellant-Hydrazine Reaction Chambers. Report 20-77, Jet Propulsion Laboratory, Pasadena 1954.
  • [21] Makled A.E., Belal H.: Modeling of hydrazine decomposition for monopropellant thrusters. In: Proc. 13th Int. Conf. Aerospace Sci. and Aviation Technol. ASAT- 13, May 26 – 28, 2009,
  • [22] Kesten A.S.: Analytical study of catalytic reactors for hydrazine decomposition. Report H910461-38, United Aircraft Research Laboratories, 1969.
  • [23] Shankar V., Ram K.A.: Experimental investigations of the 10 N catalytic hydrazine thruster. Acta Astronaut. 12(1985), 4, 237–249.
  • [24] Hwang C.H., Lee S.N., Baek S.W., Han C.Y., Kim S.K., Yu M.J.: Effects of catalyst bed failure on thermochemical phenomena for a hydrazine monopropellant thruster using Ir/Al2O3 catalysts. Ind. Eng. Chem. Res. 51(2012), 15, 5382-5393.
  • [25] Meng P.R.: A Life Test of a 22-Newton (5-lbf) Hydrazine Rocket. NASA Technical Memorandum, Washington, D.C., 1987.
  • [26] Vieira R., Bastos-Netto D., Ledoux M.J., Pham-Huu C.: Hydrazine decomposition over iridium supported on carbon nanofibers composite for space applications: Near actual flight conditions tests. Appl. Catal. A 279(2005), 1-2, 35–40.
  • [27] Zolfaghari R.: Effective Parameters on Synthesis of Ir/γ-Al2O3 for Hydrazine Decomposition and Optimizing Them. MSc thesis, Malek Ashtar University of Technology, Tehran 2013.
  • [28] Shirvani F.: Modeling of Classic Fixed Bed Catalytic Reactor for Hydrazine Decomposition. MSc thesis, Malek Ashtar University of Technology, Tehran 2014.
  • [29] Salimi M.: Evaluation of Monolith Nanocatalyst in Hydrazine Decomposition Reactor. MSc thesis, Malek Ashtar University of Technology, Tehran 2014.
  • [30] Asadi A.: Synthesis and Evaluation of Bimetallic Nanocatalyst for Hydrazine Decomposition. Malek Ashtar University of Technology, Tehran, 2013.
  • [31] Shankar V., Anantha Ram K., Bhaskaran K.A.: Experimental investigations of the 10 N catalytic hydrazine thruster. Acta Astronaut. 12(1985), 237–249.
  • [32] Soares Neto T.G., Gobbo-Ferreira J., Cobo A . G., Cruz G M.: IrRu/Al2O3 catalysts used in satellite propulsion. Braz. J. Chem. Eng. 20(2003), 3, 273–282.
  • [33] Soares Neto T.G., Cobo A.J.G., Cruz G.M.: Textural properties evolution of Ir and Ru supported on alumina catalysts during hydrazine decomposition in satellite thruster. Appl. Catal. A 250(2003), 2, 331–340.
  • [34] de Almeida Coelho N.M., Furtado J.L.B., Pham-Huu C., Vieira R.: Carbon nanofibers: a versatile catalytic support. Mater. Res. 11(2008), 3, 353–357.
  • [35] Smith J.M., Van Ness H.C.: Introduction to Chemical Engineering Thermodynamics (7th Edn.). McGraw-Hill, New York 2010.
  • [36] Fortini A.J., Wright M.J.: Self-adjusting catalyst for propellant decomposition. United States patent US 20080064913A1, 2008.
  • [37] Adler D., Dubrov E., Manheimer-Timnat Y.: The performance of a hydrazine engine with an improved catalyst. Acta Astronaut. 2(2005), 7-8, 613–625.
  • [38] Matlab, version 2015b.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-099644af-c3fc-4b30-8dcb-dc148a53072c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.