PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal conductivity of CNT - wated nanofluids: a review

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In heat transportation applications, water is most commonly used fluid. The efficiency of equipment used in these applications depends on thermal characteristics of water used. The thermal characteristics of water could be upgraded by suspending high thermal conducting solid nanoparticles. In this paper an attempt has been made to know how the use of surfactants and functionalization of carbon nanotube walls can affect the thermal characteristics and stability of nanofluid. A thorough analysis of collected literature revealed that carbon nanotubes have much higher thermal conductivity than any other nanoparticles and hence improve the thermal properties of water when suspended in them. Further it is concluded that suspension of carbon nanotubes in water requires use of surfactant or functionalization of carbon nanotube walls with proper group. By setting optimum pH and better dispersion, better thermal conductivity is possible. Experimental studies in the literature survey reveal that chemical stabilization techniques and physical stabilization techniques together decide the stability of the nanofluid.
Rocznik
Strony
207--220
Opis fizyczny
Bibliogr. 32 poz., 1 il. kolor., rys.
Twórcy
autor
  • PG Scholar, Department of Mechanical Engineering, GMR Institute of Technology, India
autor
  • PG Scholar, Department of Mechanical Engineering, GMR Institute of Technology, India
  • PG Scholar, Department of Mechanical Engineering, GMR Institute of Technology, India
Bibliografia
  • [1] Chol, S. U. S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed, 231, 99–106, 1995.
  • [2] Mizuno, K., Ishii, J., Kishida, H., Hayamizu, Y., Yasuda, S., Futaba, D. N., Yumura, M., Hata, K.: A black body absorber from vertically aligned single-walled carbon nanotubes, Proc. Natl. Acad. Sci., 106, 15, 6044–6047, 2009.
  • [3] Lee, S. W., Park, S. D., Kang, S., Bang, I.C., Kim, J. H.: Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications, Int. J. Heat Mass Transf., 54, 1, 433–438, 2011.
  • [4] Pryazhnikov, M. I., Minakov, A. V, Rudyak, V. Y., Guzei, D. V.: Thermal conductivity measurements of nanofluids, Int. J. Heat Mass Transf., 104, 1275–1282, 2017.
  • [5] Jeong, J., Li, C., Kwon, Y., Lee, J., Kim, S. H., Yun, R.: Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids, Int. J. Refrig., 36, 8, 2233–2241, 2013.
  • [6] Chen, L., Yu, W., Xie, H.: Enhanced thermal conductivity of nanofluids containing Ag/MWNT composites, Powder Technol., 231, 18–20, 2012.
  • [7] Zhu, H., Han, D., Meng, Z., Wu, D., Zhang, C.: Preparation and thermal conductivity of CuO nanofluid via a wet chemical method, Nanoscale Res. Lett., 6, 1, 181, 2011.
  • [8] He, Y., Jin, Y., Chen, H., Ding, Y., Cang, D., Lu, H.: Heat transfer and flow behaviour of aqueous suspensions of TiO 2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transf., 50, 11, 2272–2281, 2007.
  • [9] Paul, G., Chopkar, M., Manna, I., Das, P.K.: Techniques for measuring the thermal conductivity of nanofluids: a review, Renew. Sustain. Energy Rev., 14, 7, 1913–1924, 2010.
  • [10] Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature, 363, 6430, 603–60, 19935.
  • [11] Li, S., Eastman, J. A.: Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transf, 121, 2, 280–289, 1999.
  • [12] Anoop, K., Cox, J., Sadr, R.: Thermal evaluation of nanofluids in heat exchangers, Int. Commun. Heat Mass Transf., 49, 5–9, 2013.
  • [13] Elias, M. M., Shahrul, I. M., Mahbubul, I. M., Saidur, R., Rahim, N. A.: Effect of different nanoparticle shapes on shell and tube heat exchanger using different baffle angles and operated with nanofluid, Int. J. Heat Mass Transf., 70, 289–297, 2014.
  • [14] Mohammed, H. A., Gunnasegaran, P., Shuaib, N. H.: Influence of various base nanofluids and substrate materials on heat transfer in trapezoidal microchannel heat sinks, Int. Commun. Heat Mass Transf., 38, 2, 194–201, 2011.
  • [15] Peyghambarzadeh, S. M., Hashemabadi, S. H., Chabi, A. R., Salimi, M.: Performance of water based CuO and Al 2 O 3 nanofluids in a Cu–Be alloy heat sink with rectangular microchannels, Energy Convers. Manag., 86, 28–38, 2014.
  • [16] Esfe, M. H., Saedodin, S.: Turbulent forced convection heat transfer and thermophysical properties of Mgo–water nanofluid with consideration of different nanoparticles diameter, an empirical study, J. Therm. Anal. Calorim., 119, 2, 1205–1213, 2015.
  • [17] Rimbault, B., Nguyen, C. T., Galanis, N.: Experimental investigation of CuO–water nanofluid flow and heat transfer inside a microchannel heat sink, Int. J. Therm. Sci., 84, 275–292, 2014.
  • [18] Li, H.,Wang, L., He, Y., Hu, Y., Zhu, J., Jiang, B.: Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids, Appl. Therm. Eng., 88, 363–368, 2015.
  • [19] Esfe, M. H., Saedodin, S., Asadi, A., Karimipour, A.: Thermal conductivity and viscosity of Mg (OH) 2-ethylene glycol nanofluidsm J. Therm. Anal. Calorim., 120, 2, 1145–1149, 2015.
  • [20] Tyagi, H., Phelan, P., Prasher, R.: Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector, J. Sol. energy Eng., 131, 4, 41004, 2009.
  • [21] Esfe, M. H., Saedodin, S., Mahian, O., Wongwises, S.: Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids, Int. Commun. Heat Mass Transf., 58, 176–183, 2014.
  • [22] Studart, A. R., Amstad, E., Gauckler, L. J.: Colloidal stabilization of nanoparticles in concentrated suspensions, Langmuir, 23, 5, 1081–1090, 2007.
  • [23] Wusiman, K., Jeong, H., Tulugan, K., Afrianto, H., Chung, H.: Thermal performance of multi-walled carbon nanotubes (MWCNTs) in aqueous suspensions with surfactants SDBS and SDS, Int. Commun. Heat Mass Transf., 41, 28–33, 2013.
  • [24] Maré, T., Halelfadl, S., Van Vaerenbergh, S., Estellé, P.: Unexpected sharp peak in thermal conductivity of carbon nanotubes water-based nanofluids, Int. Commun. heat mass Transf., 66, 80–83, 2015.
  • [25] Estellé, P., Halelfadl, S., Maré T.: Lignin as dispersant for water-based carbon nanotubes nanofluids: impact on viscosity and thermal conductivity, Int. Commun. Heat Mass Transf., 57, 8–12, 2014.
  • [26] Amrollahi, A., Rashidi, A.M., Emami Meibodi, M., Kashefi, K.: Conduction heat transfer characteristics and dispersion behaviour of carbon nanofluids as a function of different parameters, J. Exp. Nanosci., 4, 4, 347–363, 2009.
  • [27] Xing, M., Yu, J., Wang, R.: Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes, Int. J. Heat Mass Transf., 88, 609–616, 2015.
  • [28] Xing, M., Yu, J., Wang, R.: Thermo-physical properties of water-based singlewalled carbon nanotube nanofluid as advanced coolant, Appl. Therm. Eng., 87, 344–351, 2015.
  • [29] Soltanimehr, M., Afrand, M.: Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems, Appl. Therm. Eng., 105, 716–723, 2016.
  • [30] Esfe, M. H., Yan, W.-M., Akbari, M., Karimipour, A., Hassani, M.: Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids, Int. Commun. Heat Mass Transf., 68, 248–251, 2015.
  • [31] Karami, M., Bahabadi, M. A. A., Delfani, S., Ghozatloo, A.: A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector, Sol. Energy Mater. Sol. Cells, 121, 114–118, 2014.
  • [32] Nasiri, A., Shariaty-Niasar, M., Rashidi, A. M., Khodafarin R.: Effect of CNT structures on thermal conductivity and stability of nanofluid, Int. J. Heat Mass Transf., 55, 5, 1529–1535, 2012.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09964462-be38-4295-9833-5d3fed245ac8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.