PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Automotive fleet repair facility wastewater treatment using air/ZVI and air/ZVI/H2O2 processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Oczyszczanie ścieków z zakładów naprawczych floty samochodowej z wykorzystaniem procesów powietrze/ZVI i powietrze/ZVI/H2O2
Języki publikacji
EN
Abstrakty
EN
Advanced automotive fleet repair facility wastewater treatment was investigated with Zero-Valent Iron/Hydrogen Peroxide (Air/ZVI/H2O2) process for different process parameters: ZVI and H2O2 doses, time, pH. The highest Chemical Oxygen Demand (COD) removal efficiency, 76%, was achieved for ZVI/H2O2 doses 4000/1900 mg/L, 120 min process time, pH 3.0. COD decreased from 933 to 227 mg/L. In optimal process conditions odor and color were also completely removed. COD removal efficiency was increasing with ZVI dose. Change pH value below and over 3.0 causes a rapid decrease in the treatment effectiveness. The Air/ZVI/H2O2 process kinetics can be described as d[COD]/dt = -a [COD]tm, where ‘t’ corresponds with time and ‘a’ and ‘m’ are constants that depend on the initial reagent concentrations. H2O2 influence on process effect was assessed. COD removal could be up to 40% (560 mg/L) for Air/ZVI process. The FeCl3 coagulation effect was also evaluated. The best coagulation results were obtained for 700 mg/L Fe3+ dose, that was slightly higher than dissolved Fe used in ZVI/H2O2 process. COD was decreased to 509 mg/L.
PL
Ścieki z zakładu naprawczego floty samochodowej poddano oczyszczaniu z wykorzystaniem żelaza metalicznego i nadtlenku wodoru (Air/ZVI/H2O2). Badano wpływ dawki żelaza i nadtlenku wodoru, czasu i pH na efektywność procesu. Największy stopień usunięcia ChZT, 76%, uzyskano dla dawek ZVI/H2O2 4000/1900 mg/L, czasu 120 min i pH 3.0. ChZT zmniejszono z 933 do 227 mg/L. Dodatkowo uzyskano całkowite usunięcie barwy i zapachu. Skuteczność usunięcia ChZT rosła wraz ze wzrostem zastosowanej dawki ZVI. Zmiana pH na inne niż 3, powoduje gwałtowne zmniejszenie efektywności procesu. Kinetyka procesu może zostać opisana z wykorzystaniem równania d[COD]/dt = -a [COD]tm, gdzie ‘t’ oznacza czas a ‘a’ i ‘m’ są stałymi zależnymi od początkowego stężenia reagentów. Badano także wpływ H2O2 na efektywność procesu. Skuteczność usunięcia ChZT wynosi 40% (560 mg/L) w przypadku zastosowania ZVI bez dodatku H2O2. Określono także skuteczność koagulacji z wykorzystaniem FeCl3. Najlepsze rezultaty uzyskano dla dawki Fe3+ 700 mg/L, zmniejszając ChZT do 509 mg/L.
Rocznik
Strony
24--31
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
  • Warsaw University of Technology, Poland, Faculty of Building Services, Hydro and Environmental Engineering
autor
  • Warsaw University of Technology, Poland, Faculty of Building Services, Hydro and Environmental Engineering
Bibliografia
  • [1]. Babuponnusami, A. & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment, Journal of Environmental Chemical Engineering, 2, pp. 557–572.
  • [2]. Barreto-Rodriguesa, M., Silva, F.T. & Paiva, T.C.B. (2009). Optimization of Brazilian TNT industry wastewater treatment using combined zero-valent iron and Fenton processes, Journal of Hazardous Materials, 168, pp. 1065–1069.
  • [3]. Bautitz, I.R., Velosa, A.C. & Nogueira, R.F.P. (2012). Zero valent iron mediated degradation of the pharmaceutical diazepam, Chemosphere, 88, pp. 688–692.
  • [4]. Chang, M.C., Shu, H.Y., Yu, H.H. & Sung, Y.C. (2006). Reductive decolorization and total organic carbon reduction of the diazo dye CI Acid Black 24 by zero-valent iron powder, Journal of Chemical Technology and Biotechnology, 81, pp. 1259–1266.
  • [5]. Cao, J., Wei, L., Hunag, Q., Wang, L. & Han, S. (1999). Reductive degradation of azo dye by zero valent iron in aqueous solution, Chemosphere, 38, pp. 565–571.
  • [6]. Chen, J.L., Al-Abed, S.R., Ryan, J.A. & Li, Z. (2001). Effects of pH on dechlorination of trichloroethylene by zero-valent iron, Journal of Hazardous Materials, 83, pp. 243–254.
  • [7]. Deng, Y. & Englehardt, J.D. (2006). Treatment of landfill leachate by the Fenton process, Water Research, 40, pp. 3683–3694.
  • [8]. Devi, L.G., Kumar, S.G., Reddy, K.M. & Munikrishnappa, C. (2009). Photo degradation of Methyl Orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism, Journal of Hazardous Materials, 164, pp. 459–467.
  • [9]. Dong, J., Zhao, Y., Zhao, R. & Zhou, R. (2010). Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron, Journal of Environmental Sciences, 22, pp. 1741–1747.
  • [10]. Fan, J., Guo, Y., Wang, J. & Fan, M. (2009). Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles, Journal of Hazardous Materials, 166, pp. 904–910.
  • [11]. Fateminia, F.S. & Falamaki, C. (2013). Zero valent nano-sized iron/clinoptilolite modified with zero valent copper for reductive nitrate removal, Process Safety and Environmental Protection, 91, pp. 304–310.
  • [12]. Fjordbøge, A.S., Baun, A., Vastrup, T. & Kjeldsen, P. (2013). Zero valent iron reduces toxicity and concentrations of organophosphate pesticides in contaminated groundwater, Chemosphere, 90, pp. 627–633.
  • [13]. Gogate, P.R. & Pandit, A.B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Advances in Environmental Research, 8, pp. 501–551.
  • [14]. Grcic, I., Papic, S., Zizek, K. & Koprivanac, N. (2012). Zero-valent iron (ZVI) Fenton oxidation of reactive dye wastewater under UV-C and solar irradiation, Chemical Engineering Journal, 195–196, pp. 77–90.
  • [15]. Guides to Pollution Prevention. The Automotive Repair Industry. United States Environmental Protection Agency (1991). EPA/625/7-91/013.
  • [16]. Kang, Y.W. & Hwang, K-Y. (2000). Effect of reaction conditions on the oxidation efficiency in the Fenton process, Water Research, 34, pp. 2786–2790.
  • [17]. Kim, D., Kim, J. & Choi, W. (2011). Effect of magnetic field on the zero valent iron induced oxidation reaction, Journal of Hazardous Materials, 192, pp. 928–931.
  • [18]. Lai, P., Zhao, H., Wang, C. & Ni, J. (2007). Advanced treatment of coking wastewater by coagulation and zero-valent iron processes, Journal of Hazardous Materials, 147, pp. 232–239.
  • [19]. Lau, I.W.C., Wang, P. & Fang, H.H.P. (2001). Organic removal of anaerobically treated leachate by Fenton coagulation, Journal of Environmental Engineering, 27, pp. 666–669.
  • [20]. Makowska, M. & Mazurkiewicz, J. (2016). Treatment of wastewater from service areas at motorways, Archives of Environmental Protection, 42, (4), pp. 80–89.
  • [21]. Marcinowski, P., Bogacki, J. & Naumczyk, J. (2014). Cosmetic wastewater treatment using the Fenton, Photo-Fenton and H2O2/UV processes, Journal of Environmental Science and Health, Part A, 49, pp. 1531–1541.
  • [22]. Martins, R.C., Nunesa, M., Gando-Ferreira, L.M. & Quinta-Ferreira, R.M. (2014). Nanofiltration and Fenton’s process over iron shavings for surfactants removal, Environmental Technology, 35, pp. 2380–2388.
  • [23]. Moon, B.-H., Park, Y.-B. & Park, K.-H. (2011). Fenton oxidation of Orange II by pre-reduction using nanoscale zero-valent iron, Desalination, 268, pp. 249–252.
  • [24]. Naumczyk, J., Prokurat, I. & Marcinowski, P. (2012). Landfill leachates treatment by H2O2/UV,O3/H2O2, modified Fenton and modified Photo-Fenton methods, International Journal of Photoenergy, DOI: 10.1155/2012/909157.
  • [25]. Piecuch, T., Andriyevska, L., Dąbrowski, J., Dąbrowski, T., Juraszka, B. & Kowalczyk, A. (2015). Oczyszczanie ścieków ze stacji naprawy samochodów, Annual Set The Environment Protection, 17, pp. 814–832.
  • [26]. Pourrezaei, P., Alpatova, A., Khosravi, K., Drzewicz, P., Chen, Y., Chelme-Ayala, P. & El-Din, M.G. (2014). Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke, Journal of Environmental Management, 139, pp. 50–58.
  • [27]. Rozporządzenie Ministra Środowiska, Dziennik Ustaw z dnia 18 listopada 2014 r. Poz. 1800, w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego.
  • [28]. Rubio-Clemente, A., Torres-Palma, R.A. & Peñuela, G.A. (2014). Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: A review, Science of the Total Environment, 478, pp. 201–225.
  • [29]. Segura, Y., Martínez, F. & Melero, J.A. (2013). Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron, Applied Catalysis B-Environmental, 136–137, pp. 64–69.
  • [30]. Shen, J., Ou, C., Zhou, Z., Chen, J., Fang, K., Sun, X., Li, J., Zhou, L. & Wang, L. (2013). Pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater using a combined zero-valent iron (ZVI) reduction and Fenton oxidation process, Journal of Hazardous Materials, 260, pp. 993–1000.
  • [31]. Shimizu, A., Tokumura, M., Nakajima, K. & Kawase, Y. (2012). Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: Roles of decomposition by the Fenton reaction and adsorption/precipitation, Journal of Hazardous Materials, 201–202, pp. 60–67.
  • [32]. Suzuki, T., Moribe, M., Oyama, Y. & Niinae, M. (2012). Mechanism of nitrate reduction by zero-valent iron: Equilibrium and kinetics studies, Chemical Engineering Journal, 183, pp. 271–277.
  • [33]. Taha, M.R. & Ibrahim, A.H. (2014). Characterization of nano zero-valent iron (nZVI) and its application in sono-Fenton process to remove COD in palm oil mill effluent, Journal of Environmental Chemical Engineering, 2, pp. 1–8.
  • [34]. Weng, C.-H., Lin, Y.-T., Chang, C.-K. & Liu, N. (2013). Decolourization of direct blue 15 by Fenton/ultrasonic process using a zero-valent iron aggregate catalyst, Ultrasonics Sonochemistry, 20, pp. 970–977.
  • [35]. Xi, Y., Sun, Z., Hreid, T., Ayoko, G.A. & Frost, R.L. (2014). Bisphenol A degradation enhanced by air bubbles via advanced oxidation using in situ generated ferrous ions from nano zero-valent iron/palygorskite composite materials, Chemical Engineering Journal, 247, pp. 66–74.
  • [36]. Yang, S.-T., Zhang, W., Xie, J., Liao, R., Zhang, X., Yu, B., Wu, R., Liu, X., Li, H. & Guo, Z. (2015). Fe3O4@SiO2 nanoparticles as a high-performance Fenton-like catalyst in a neutral environment, RSC Advances, 5, pp. 5458–5463.
  • [37]. Yang, S.T., Yang, L.J., Liu, X.Y., Xie, J.R., Zhang, X.L., Yu, B.W., Wu, R.H., Li, H.L., Chen, L.Y. & Liu, J.H. (2015). TiO2-doped Fe3O4 nanoparticles as high-performance Fenton-like catalyst for dye decoloration, Science China Technological Sciences, 58, pp. 858–863.
  • [38]. Zhang, H., Choi, H.J. & Huang, C.-P. (2005) Optimization of Fenton process for the treatment of landfill leachate, Journal of Hazardous Materials B, 125, pp. 166–174.
  • [39]. Zhang, X., He, M., Liu, J.-H., Liao, R., Zhao, L., Xie, J., Wang, R., Yang, S.-T., Wang, H. & Liu, Y. (2014). Fe3O4@C nanoparticles as high-performance Fenton-like catalyst for dye decoloration, Chinese Science Bulletin, 59, pp. 3406–3412.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09953696-9646-4630-abf2-85cc4229fd23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.