Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main goal of estimating models for industrial applications is to guarantee the cheapest system identification. The requirements for the identification experiment should not be allowed to affect product quality under normal operating conditions. This paper deals with ensuring the required liquid levels of the cascade system tanks using the model predictive control (MPC) method. The MPC strategy was extended with the Kalman filter (KF) to predict the system’s succeeding states subject to a reference trajectory in the presence of both process and measurement noise covariances. The main contribution is to use the application-oriented input design to update the parameters of the model during system degradation. This framework delivers the least-costly identification experiment and guarantees high performance of the system with the updated model. The methods presented are evaluated both in the experiments on a real process and in the computer simulations. The results of the robust MPC application for cascade system water levels control are discussed.
Rocznik
Tom
Strony
art. no. e143646
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Bialystok University of Technology, Faculty of Computer Science, Wiejska 45A, 15-351 Białystok, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Computer Science and Information Technology, Żołnierska 49, ˙71-210 Szczecin, Poland
Bibliografia
- [1] R. Kalaba and K. Spingarn, Control, identification, and input optimization. softcover reprint of the original 1st ed., 1982, Springer US, 2012, pp. 225–299.
- [2] R.S. Sánchez-Peña, J. Quevedo Casín, and V. Puig Cayuela, Eds., Identification and Control. The Gap between Theory and Practice, Springer-Verlag, London, 2007, pp. 203–242.
- [3] E. Ikonen and K. Najim, Advanced Process Identification and Control, Taylor and Francis, Boca Raton, 2019, pp. 137–180.
- [4] M. Gevers, “Identification for control: from the early achievements to the revival of experiment design,” Eur. J. Control, vol. 11, pp. 335–352, 2005, doi: 10.3166/ejc.11.335-352.
- [5] M. Annergren, C.A.A. Larsson, H. Hjalmarsson, X. Bombois, and B. Wahlberg, “Application-oriented input design in system identification: Optimal input design for control,” IEEE Control Syst. Mag., vol. 37, no. 2, pp. 31–56, 2017, doi: 10.1109/MCS.2016.2643243.
- [6] R. Pintelon and J. Schoukens, System Identification: A Frequency Domain Approach. 2nd ed., John Wiley & Sons: New York, NY, USA, 2001, pp. 151–224.
- [7] X. Bombois, G. Scorletti, M. Gevers, P.M.J. Van den Hof, and R. Hildebrand, “Least costly identification experiment for control,” Automatica, vol. 42, no. 10, pp. 1651–1662, 2006, doi: 10.1016/j.automatica.2006.05.016.
- [8] G.G. Yin, S. Kan and L.Y. Wang, “Identification Error Bounds and Asymptotic Distributions for Systems with Structural Uncertainties,” Journal of Systems Science and Complexity, vol. 19, no. 1, pp. 22–35, 2006, doi: 10.1007/s11424-006-0022-7.
- [9] H. Hjalmarsson, “From experiment design to closed-loop control,” Automatica, vol. 41, pp. 393–438, 2005, doi: 10.1016/j.automatica.2004.11.021.
- [10] C.R. Rojas, J.C. Agüero, J.S.Welsh, and G.C. Goodwin, “On the equivalence of least costly and traditional experiment design for control,” Automatica, vol. 44, no. 11, pp. 2706–2715, 2008, doi: 10.1016/j.automatica.2008.03.023.
- [11] S. Narasimhan and R. Rengaswamy, “Plant friendly input design: Convex relaxation and quality,” IEEE Trans. Automat. Control, vol. 56, pp. 1467–1472, 2011, doi: 10.1109/TAC.2011.2132290.
- [12] W. Jakowluk, “Free final time input design problem for robust entropy-like system parameter estimation,” Entropy, vol. 20, no. 7, p. 528, 2018, doi: 10.3390/e20070528.
- [13] D.E. Rivera, H. Lee and M.W. Braun, “’Plant-friendly’ system identification: A challenge for the process industries,” in Proc. IFAC Symp. System Identification, Netherlands, 2003, pp. 917–922, doi: 10.1016/S1474-6670(17)34873-5.
- [14] A. Kumar and S. Narasimhan, “Robust plant friendly optimal input design,” in Proc. 10th IFAC Symposium on Dynamics and Control of Process Systems, India, 2013, pp. 553–558, doi: 10.3182/20131218-3-in-2045.00110.
- [15] X. Bombois, G. Scorletti, P. Van den Hof and M. Gevers, “Least costly identification experiment for control. A solution based on a high-order model approximation,” Proc. of the 2004 American Control Conference, 2004, vol.3, pp. 2818–2823, doi: 10.23919/ACC.2004.1383893.
- [16] C.A. Larsson et al., “Model predictive control with integrated experiment design for output error systems,” in Proc. European Control Conf., Switzerland, 2013, pp. 3790–3795, doi: 10.23919/ECC.2013.6669533.
- [17] J.M. Maciejowski, Predictive Control with Constraints, Englewood Cliffs, NJ: Prentice-Hall, 2002, pp. 108–115.
- [18] R. Isermann and M. Münchhof, Identification of Continuous-Time Systems: Linear and Robust Parameter Estimation. Springer, 2011, pp. 453–499.
- [19] “Multi Tank,” Inteco. [Online]. Available: www.inteco.com.pl/products/multi-tank [Accessed: 18. Oct. 2022].
- [20] W. Jakowluk, “Optimal input signal design for fractional-order system identification,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 4, pp. 883–891, 2019, doi: 10.24425/bpas.2019.127336.
- [21] A.C. Atkinson, A.N. Donev, and R.D. Tobias, Optimum Experimental Designs, with SAS. Oxford Univ. Press, Oxford, 2007, pp. 119–147.
- [22] A. Schwartz, E. Polak, and Y. Chen, “Riots a Matlab toolbox for solving optimal control problems,” Version 1.0 for Windows, May 1997. [Online]. Available: http://www.schwartz-home.com/RIOTS/ [Accessed: 18 Oct. 2022].
- [23] S. Jaszczak and P. Nikończuk, “ Identification of the plant dynamic using genetic algorithms,” 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Poland, 2016, pp. 516–519, doi: 10.1109/MMAR.2016.7575189.
- [24] T. Iwasaki and S. Hara, “Generalized KYP lemma: unified frequency domain inequalities with design applications,” IEEE Trans. Autom. Control, vol. l50, no. 1, pp. 41–59, 2005, doi: 10.1109/TAC.2004.840475.
- [25] M. Annergren and C. A. Larsson, “Moose2 - A toolbox for least-costly application-oriented input design,” SoftwareX, vol. 5, pp. 96–100, 2016, doi: 10.1016/j.softx.2016.05.003.
- [26] H. Hjalmarsson, “System identification of complex and structured systems,” Eur. J. Control, vol. 15, no. 3, pp. 275–310, 2009, doi: 10.3166/ejc.15.275-310.
- [27] M. Annergren and C.A. Larsson, “MOOSE2: Model based optimal input signal design toolbox.” Version 2.0, 2015. [Online]. Available: www.kth.se/is/dcs/research/sysid/moose/moose2-toolbox-1.194509 [Accessed: 18 Oct. 2022].
- [28] W. Jakowluk and S. Boersma, “Fractional-order nonlinear system identification using MPC technique,” in Proc. Computer Information Systems and Industrial Management, Poland, 2021, vol. 12883, pp. 381–393, doi: 10.1007/978-3-030-84340-3_31.
- [29] P. Kurtyna-Mazurek, T. Szolc, M. Henzel, and K. Falkowski, “Control system with a non-parametric predictive algorithm for a high-speed rotating machine with magnetic bearings,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 6, p. e138998, 2021, doi: 10.24425/bpasts.2021.138998.
- [30] S.P. Diwan and S.S. Deshpande, “Computationally efficient nonlinear model predictive controller using parallel particle swarm optimization,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 4, p. e140696, 2022, doi: 10.24425/bpasts.2022.140696.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0993f980-3fab-4776-8203-4970a12d6ac2