PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Large Eddy Simulation of turbulent flowand heat transfer in a Kenics static mixer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
CFD modelling of momentum and heat transfer using the Large Eddy Simulation (LES) approach hasbeen presented for a Kenics static mixer. The simulations were performed with the commercial codeANSYS Fluent 15 for turbulent flow of three values of Reynoldsnumber,Re=5 000, 10 000 and18 000. The numerical modelling began in the RANS model, where standardk−εturbulence modeland wall functions were used. Then the LES iterations started from the initial velocity and temperaturefields obtained in RANS. In LES, the Smagorinsky–Lilly modelwas used for the sub-grid scalefluctuations along with wall functions for prediction of flowand heat transfer in the near-wall region.The performed numerical study in a Kenics static mixer resulted in highly fluctuating fields of bothvelocity and temperature. Simulation results were presented and analysed in the form of velocity andtemperature contours. In addition, the surface-averaged heat transfer coefficient values for the wholeinsert length were computed and compared with the literature experimental data. Good compliance ofthe LES simulation results with the experimental correlation was obtained.
Rocznik
Strony
87–--99
Opis fizyczny
Bibliogr. 38 poz., tab., rys.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineeringand Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineeringand Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Adamiak I., Jaworski Z., 2001. Experimental studies of non-Newtonian liquid flow in the Kenics static mixer.Chem.Process Eng., 22, 3B, 157–180 (in Polish).
  • 2. Alberini F., Simmons M.J.H., IngramA.,Stitt E.H.,2014. Assessmentofdifferent methods of analysis to characterisethe mixing of shear-thinning fluids in a Kenics KM static mixer using PLIF.Chem. Eng. Sci., 112, 152–169.DOI: 10.1016/j.ces.2014.03.022.
  • 3. Byrde O., Sawley, M. 1999. Optimization of a Kenics static mixer for non-creeping flow conditions.Chem. Eng. J.,72, 163–169. DOI: 10.1016/S1385-8947(98)00145-4.
  • 4. Chang K.-T., Jang J.-H., 2012. Heat transfer characteristics with insertion of tri-helical static mixers in pipes.Progress Comput. Fluid Dyn., Int. J. (PCFD), 12(4). DOI: 10.1504/PCFD.2012.048251.
  • 5. De S., Agarwal A.K., Chaudhuri S., Sen S., 2018.Modeling and simulation of turbulent combustion. Springer,Singapore. DOI: 10.1007/978-981-10-7410-3.
  • 6. Dhakal T.P., Walters D.K., Strasser W., 2014. Numerical study of gas-cyclone airflow: an investigation of turbulencemodelling approaches.Int. J. Comput. Fluid Dyn., 28, 1–15. DOI: 10.1080/10618562.2013.878800.
  • 7. Ferziger J.H., Peric M., 1996.Computational methods for fluid dynamics. Springer. Berlin.
  • 8. Grace C.D., 1971. Static mixing and heat transfer.Chem. Proc. Eng., 52, 57–59.
  • 9. Haringa C., Vandewijer R., Mudde R.F., 2018. Inter-compartment interaction in multi-impeller mixing. Part II.Experiments, sliding mesh and large Eddy simulations.Chem.Eng. Res. Des.,136, 886–899.DOI: 10.1016/j.cherd.2018.06.007.
  • 10. Hewitt G., Vassilicos Ch., 2005.Prediction of turbulent flows. Cambridge University Press, Cambridge.
  • 11. Hobbs D.M., Muzzio F.J., 1998. Optimization of a static mixer using dynamical system techniques.Chem. Eng.Sci., 53, 3199–321. DOI: 10.1016/S0009-2509(98)00115-8.
  • 12. Joshi P., Nigam K.D.P., Bruce Nauman E., 1995. The Kenics static mixer: New data and proposed correlations.Chem. Eng. J., 59, 265–271. DOI: 10.1016/0923-0467(94)02948-2.
  • 13. Kharoua N., Khezzar L., Alshehhi M., 2018. The interaction of confined swirling flow with a conical bluff body: Numerical simulation.Chem. Eng. Res. Des., 136, 207–218. DOI: 10.1016/j.cherd.2018.04.034.
  • 14. Kumar V., Shirke V., Nigam K.D.P., 2008. Performance of Kenics static mixer over a wide range of Reynoldsnumber. Chem. Eng. J., 139, 284–295. DOI: 10.1016/j.cej.2007.07.101.
  • 15. Lang E., Drtina P., Streiff F., Fleischli M., 1995. Numericalsimulation of the fluid flow and the mixing process ina static mixer.Int. J. Heat Mass Transfer, 38, 2239–2250. DOI: 10.1016/0017-9310(94)00351-U.
  • 16. Launder B.E., Spalding D.B., 1974. The numerical computation of turbulent flows.Comp. Meth. Applied Mech.Eng., 3, 269–289. DOI: 10.1016/0045-7825(74)90029-2.
  • 17. Lesieur H., 1997.Turbulencein fluids,stochastic and numericalmodelling. KluwerAcademicPublishers, Dordrecht.
  • 18. Li G., Miles N.J., Wu T., Hall P., 2017. Large eddy simulationand Reynolds-averaged Navier–Stokes basedmodelling of geometrically induced swirl flows applied for the better understanding of Clean-In-Place procedures.Food Bioprod. Process., 104, 77–93. DOI: 10.1016/j.fbp.2017.05.001.
  • 19. Li Z., Bao Y., Gao Z., 2011. PIV experiments and large eddy simulations of single-loop flow fields in Rushtonturbine stirred tanks.Chem. Eng. Sci., 66, 1219–1231. DOI: 10.1016/j.ces.2010.12.024.
  • 20. Lisboa P.F., Fernandes J., Simões P.C., Mota J.P.B., Saatdjian E., 2010. Computational-fluid-dynamics study ofa Kenics static mixer as a heat exchanger for supercritical carbon dioxide.J. Supercrit. Fluids, 55, 107–115.DOI: 10.1016/j.supflu.2010.08.005.
  • 21. Makowski Ł., Orciuch W., Bałdyga J., 2012. Large eddy simulations of mixing effects on the course of precipitationprocess.Chem. Eng. Sci., 77, 85–94. DOI: 10.1016/j.ces.2011.12.020
  • 22. Makowski Ł., Wojtas K., 2018. Large Eddy Simulations on selected problems in chemical engineering.In: Ochowiak M., Woziwodzki S., Doligalski M., Mitkowski P.(Eds),Practical aspects of chemical engineering.Lecture notes on multidisciplinary industrial engineering. Springer, Cham. 243–262. DOI: 10.1007/978-3-319-73978-6_17.
  • 23. Meng H., Zhu G., Yu Y., Wang Z., Wu J., 2015. Chaotic mixing characteristics in static mixers with different axialtwisted-tape inserts.Can. J. Chem. Eng., 93,1849–1859. DOI: 10.1002/cjce.22268
  • 24. Meng H., Zhu G., Yu Y., Wang Z., Wu J., 2016. The effect of symmetrical perforated holes on the turbulent heattransfer in the static mixer with modified Kenics segments.Int. J. Heat Mass Transfer, 99, 647–659.DOI: 10.1016/j.ijheatmasstransfer.2016.03.110.
  • 25. Myers K.J., Bakker A., Ryan D., 1997. Avoid agitation by selecting static mixers.Chem. Eng. Progress, 93(6),28–38.
  • 26. Nurtono T., Setyawan H., Altway A., Winardi S., 2009, Macro-instability characteristic in agitated tank based onflow visualization experiment and large eddy simulation.Chem. Eng. Res. Des., 87, 923–942. DOI: 10.1016/j.cherd.2009.01.011.
  • 27. Pope S., 2000.Turbulent flows. Cambridge University Press, Cambridge.
  • 28. Qi Y., KawaguchiY., Christensen R. N., Zakin J. L., 2003.Enhancingheat transfer ability of drag reducing surfactantsolutions with static mixers and honeycombs.Int. J. Heat Mass Transfer, 46, 5161–5173. DOI: 10.1016/ S0017-9310(03)00221-7.
  • 29. Rahmani R. K., Ayasoufi A., Keith T.G., 2007. A numerical study of the global performance of two static mixers.J. Fluids Eng., 129, 338–349. DOI: 10.1115/IMECE2005-79189.
  • 30. So R.M., Sommer T.P., 1996. An explicit algebraic heat-flux model for the temperature field.Int. J. Heat MassTransfer, 39, 455–465. DOI: 10.1016/0017-9310(95)00157-5.
  • 31. Somana S.S., Madhuranthakam C.M.R., 2017. Effects of internal geometry modi?cations on the dispersive anddistributive mixing in static mixers.Chem. Eng. Process. Process Intensif., 122, 31–43. DOI: 10.1016/j.cep.2017.10.001.
  • 32. Song S., Han H., 2005. A general correlation for pressure drop in a Kenics static mixer.Chem. Eng. Sci., 60,5696–5704. DOI: 10.1016/j.ces.2005.04.084.
  • 33. Stec M., Synowiec P.M., 2017. Study of fluid dynamic conditions in the selected static mixers. Part I – Research ofpressure drop.Can. J. Chem. Eng., 95, 2156–2167. DOI: 10.1002/cjce.22929.
  • 34. Szalai E. S., Muzzio F., 2003. Fundamental approach to the design and optimization of static mixers.AIChE J.,49,2687–2699. DOI: 10.1002/aic.690491103.
  • 35. Tian S., Barigou M., 2015. An improved vibration technique for enhancing temperature uniformity and heat transferin viscous fluid flow.Chem. Eng. Sci., 123, 609–619. DOI: 10.1016/j.ces.2014.11.029.
  • 36. Visser J.E., Rozendal P.F., Hoogstraten H.W., Beenackers A.A.C.M.,1999.Three-dimensionalnumericalsimulationof flow and heat transfer in the Sulzer SMX static mixer.Chem. Eng. Sci., 54, 2491–2500. DOI: 10.1016/ S0009-2509(98)00536-3.
  • 37. Wilcox D.C., 1993.Turbulence modelling for CFD. DCW Indus. Inc., La Cañada, California.
  • 38. Zakrzewska B., Jaworski Z., 2006. Modelling of heat transfer in static mixers.Chem. Process Eng., 27, 547–557
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0993ec63-8dee-4179-b5dc-8b0f65e5add2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.