PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transmission stability of chirped dark vector quasi-solitons in birefringent fiber system with nonlinear gain

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we consider the coupled Ginzburg–Landau equation with variable coefficients including the nonlinear gain and obtain the exact solutions of chirped dark vector quasi-solitons via the ansatz method. Next, the propagation of chirped dark vector quasi-solitons is discussed to verify whether they can be transmitted stably in the birefringent optical fiber system. The numerical simulation shows that this can be achieved. We deeply add the small perturbation to the transmission of dark vector quasi-solitons to make the results above more general. The results further prove the correctness of our solutions.
Czasopismo
Rocznik
Strony
51--58
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
  • College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
autor
  • College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
autor
  • College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
Bibliografia
  • [1] HASEGAWA A., TAPPERT F., Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion, Applied Physics Letters 23(3), 1973, pp. 142–144, DOI:10.1063/1.1654836.
  • [2] MOLLENAUER L.F., STOLEN R.H., GORDON J.P., Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Physical Review Letters 45(13), 1980, p. 1095, DOI:10.1103/PhysRevLett.45.1095.
  • [3] HASEGAWA A., KODAMA Y., Signal transmission by optical solitons in monomode fiber, Proceedings of the IEEE 69(9), 1981, pp. 1145–1150, DOI:10.1109/PROC.1981.12129.
  • [4] MARKO M., LI X., ZHENG J., Soliton propagation with cross-phase modulation in silicon photonic crystal waveguides, Journal of the Optical Society of America B 30(8), 2013, pp. 2100–2106, DOI:10.1364/JOSAB.30.002100.
  • [5] MISHRA V., VARSHNEY S.K., Interplay between Raman self-frequency shift and cross-phase modulation in the vector-soliton of a birefringent fiber, Journal of the Optical Society of America B 36(7), 2019, pp. 1806–1815, DOI:10.1364/JOSAB.36.001806.
  • [6] ISLAM M.N., POOLE C.D., GORDON J.P., Soliton trapping in birefringent optical fibers, Optics Letters 14(18), 1989, pp. 1011–1013, DOI:10.1364/OL.14.001011.
  • [7] STAJANCA P., BUGAR I., Nonlinear ultrafast switching based on soliton self-trapping in dual-core photonic crystal fibre, Laser Physics Letters 13(11), 2016, article 116201, DOI:10.1088/1612-2011/13/11/116201.
  • [8] DEY A., VARDI A., Self-trapping of excitations: two-dimensional quasiparticle solitons in an extended Bose-Hubbard dimer array, Physical Review A 95(3), 2017, article 033630, DOI:10.1103/PhysRevA.95.033630.
  • [9] HUANG L.G., LIU W.J., HUANG P., PAN N., LEI M., Soliton amplification in gain medium governed by Ginzburg–Landau equation, Nonlinear Dynamics 81(3), 2015, pp. 1133–1141, DOI:10.1007/s11071-015-2055-8.
  • [10] UZUNOV I.M., GEORGIEV Z.D., ARABADZHIEV T.N., Transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg–Landau equation under the influence of nonlinear gain and higher-order effects, Physical Review E 97(5), 2018, article 052215, DOI:10.1103/PhysRevE.97.052215.
  • [11] YAN Y., LIU W., Stable transmission of solitons in the complex cubic–quintic Ginzburg–Landau equation with nonlinear gain and higher-order effects, Applied Mathematics Letters 98, 2019, pp. 171–176, DOI:10.1016/j.aml.2019.06.008.
  • [12] FANG F., XIAO Y., Stability of chirped bright and dark soliton-like solutions of the cubic complex Ginzburg–Landau equation with variable coefficients, Optics Communications 268(2), 2006, pp. 305–310, DOI:10.1016/j.optcom.2006.07.014.
  • [13] RIZVI S.T.R., ALI K., SALMAN M., NAWAZ B., YOUNIS M., Solitary wave solutions for quintic complex Ginzburg–Landau model, Optik 149, 2017, pp. 59–62, DOI:10.1016/j.ijleo.2017.09.028.
  • [14] CHRISTODOULIDES D.N., JOSEPH R.I., Vector solitons in birefringent nonlinear dispersive media, Optics Letters 13(1), 1988, pp. 53–55, DOI:10.1364/OL.13.000053.
  • [15] KORNEEV N., KUZIN E.A., VILLAGOMEZ-BERNABE B.A., POTTIEZ O., IBARRA-ESCAMILLA B., GONZÁLEZ-GARCÍA A., DURÁN-SÁNCHEZ M., Raman-induced polarization stabilization of vector solitons incircularly birefringent fibers, Optics Express 20(22), 2012, pp. 24288–24294, DOI:10.1364/OE.20.024288.
  • [16] YUAN X., YANG T., CHEN J., HE X., HUANG H., XU S., YANG Z., Experimental observation of vector solitons in a highly birefringent cavity of ytterbium-doped fiber laser, Optics Express 21(20), 2013, pp. 23866–23872, DOI:10.1364/OE.21.023866.
  • [17] BALLA P., AGRAWAL G.P., Vector solitons and dispersive waves in birefringent optical fibers, Journal of the Optical Society of America B 35(9), 2018, pp. 2302–2310, DOI:10.1364/JOSAB.35.002302.
  • [18] WU L., CHEN W., SHEN M., Incoherently coupled two-color vector dark solitons in self-defocusing media, Optics Express 26(24), 2018, pp. 32194–32204, DOI:10.1364/OE.26.032194.
  • [19] HU X., GUO J., SHAO G.D., SONG Y.F., YOO S.W., MALOMED B.A., TANG D.Y., Observation of incoherently coupled dark-bright vector solitons in single-mode fibers, Optics Express 27(13), 2019, pp. 18311–18317, DOI:10.1364/OE.27.018311.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09922bd7-675f-44e0-972a-4ce1e311fb94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.