Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, the temperature dependence of motor resistive losses has been analytically evaluated by using a quantum mechanical approximation. It is well known that the Bloch-Gruneisen approximation is a fundamental quantum theory to the study of the resistivity of the conductor with the change of temperature by using analytical formulation. By using the proposed method, the motor resistive losses can be controlled with respect to the temperature changes. The accuracy of the proposed algorithm has been tested by comparison with different theoretical approaches. It is demonstrated that the new analytical method for the motor resistive losses controlled with the change of temperature will be used for improving motor power and mechanical systems.
Czasopismo
Rocznik
Tom
Strony
118--122
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
- Faculty of Natural Sciences and Engineering, Department of Electrical Engineering, Gaziosmanpaşa University, Tokat, Turkey
autor
- Amasya University, Taşova Vocational School, Amasya, Turkey
Bibliografia
- [1] Zhang L., Tian X., Boggs S. A.: Determination of total resistive loss in multiple circuits, threephase cable system. IEEE Transactions on Power Delivery, 26(3), 2011, 1939-1945.
- [2] Dems M., Komeza K., Lecointe J-Ph.: Variation of additional losses at no-load and full-load for a wide range of rated power induction motors. Electric Power Systems Research, 143( 2), 2017, 692-702.
- [3] Green T. C., Hernandez-Aramburo C. A., Smith A. C.: Losses in grid and inverter supplied induction machine drives. IEEE Proceedings Electric Power Applications, 150(6), 2003, 712-724.
- [4] Chiang H.K., Tseng C.H., Hsu W.L.: Implementation of a sliding mode controller for synchronous reluctance motor drive considering core losses. Journal of the Chinese Institute Engineers, 26(1), 2003, 81-86.
- [5] Tootoonchian F., Nasiri-Gheidari Z., Lesani, H.: Design, analysis, and implementation of extra low air-gap single-phase axial-flux induction motors for low-cost applications. International Transactions Electrical Energy Systems, 26(12), 2016, 2516-2531.
- [6] Livshits P., Rysin A., Sofer S., Fefer, Y.: Increased resistive losses of copper interconnects in ULSI devices-a reliability issue. IEEE Transactions on Device Materials Reliability, 11(3), 2011, 484-489.
- [7] Gmyrek Z., Boglietti A., Cavagnino A., Estimation of Iron Losses in Induction Motors: Calculation Method, Results, and Analysis. IEEE Transactions Industrial Electronics, 57(1), 2010, 161- 171.
- [8] XU, Ke, Yang J., Chuansheng T., Zhao Q.: Finite Element Analysis and Experimental Study on the Thermal Resistance Characteristics of Motor Coolers. Journal of Power Technologies, 100(3), 2020, 279-289.
- [9] Domeki H., Ishihara Y., Kaido, C. Kawase Y., Kitamura S., Shimomura T., Takahashi N., Yamada T., Yamazaki K.: Investigation of benchmark model for estimating the iron loss in rotating machine. IEEE Transactions on Magnetics, 40(2), 2004, 794-797.
- [10] Gmyrek Z., Anuszczyk J.: The rotational power loss calculation in the square sample. Computer Engineering in Applied Electromagnetism, New York: Springer-Verlag, 2005.
- [11] Yang Liu, Liming Shi, Yaohua Li: Comparison Analysis of Loss Calculation Methods and Measurement Techniques in Power Electronics and Motor Systems. International Conference on Electrical Machines and Systems, Busan, Korea, 26-29 October (2013).
- [12] Mohammad A., Lokshin E., Averbukh M.: Energy Losses Modeling in Induction Motors Fed by Danfoss VF Micro Drive FC51. 28-th International Conference Electrical and Electronics Engineers, Israel, 3-5 December (2014).
- [13] Pyrhonen J., Jokinen T., Hrabovcova V.: Design of Rotating Electrical Machines, Wiley, New Delhi, 2014.
- [14] Landau L. D., Lifshits E. M.: Statistical Physics, Pergamon Press, London, 1980.
- [15] Gruneisen E.: The temperature dependence of the electrical resistance of pure metals. Annalen der Physik, 16(3), 1933, 530-540.
- [16] Rego L. G. C., Kirczenow G.: Quantized Thermal Conductance of Dielectric Quantum Wires. Physics Review Letters, 81(6), 1998, 232-236.
- [17] Poker D. B., Klabunde C.E.: Temperature dependence of electrical resistivity of vanadium, platinum, and copper. Physics Review B, 26(12), 1982, 7012-7015.
- [18] Mamedov B. A., Askerov I. M.: A new algorithm for accurate evaluation of the generalized Bloch-Gruneisen function and its applications to MgB2 superconductor. Physics Letters A, 362(3), 2007, 324-326.
- [19] Gradshteyn I. S., Ryzhik I. M.: Tables of Integrals, Sums, Series and Products, 4thed., Academic Press, New York, 1980.
- [20] Matula R. A.: Electrical Resistivity of Copper, Gold, Palladium and Silver, Journal of Physical and Chemical Reference Data, 8(4), 1979, 1147-1298.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-09896772-b8fa-49f9-b76a-2fb6969eb49b