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1. Introduction

Pressure from the market spurs the advancement of maintenance 
strategies. Traditional maintenance strategies such as corrective main-
tenance, which only takes place when the failure is observed, and age-
based or length-of-usage-based policy, which are merely performed 
at scheduled intervals, are not always able to meet the ever-growing 
demand for high level of system reliability while balancing the operat-
ing costs. In recent years, the advance of instrumentation & measure-
ment technology has brought about the idea of condition-based main-
tenance (CBM). In contrast with any pre-determined maintenance 
strategy, CBM enables maintenance actions based on the condition 
monitoring information collected at real-time. Some successful ex-
amples of implementing CBM in real systems have demonstrated its 
efficiency and effectiveness in preventing catastrophic failures and 
improving maintenance performance (e.g. [1, 4, 6, 11, 12, 14]). 

The interest of most CBM policies has chiefly focused on a single 
failure mode, and the failure mode being mostly considered is the fail-
ure due to degradation, which is usually referred to as the soft failure. 

Soft failure is identified when the system state defined by the degra-
dation level exceeds a predetermined threshold, and when it happens, 
the system is no longer assumed to be able to function satisfactorily 
or safely and it should be stopped and replaced, even if no physi-
cal failure is observed. The most frequently used CBM strategy for 
a continuous-state degrading system subject to the soft failure is the 
control-limit policy. Wang [19] jointly optimized the inspection inter-
val and a control limit of preventive maintenance for a degradation 
process described by a linear growth model with random coefficients. 
Liao et al. [13] investigated a condition-based availability limit policy 
for a gamma-process-based degrading system, considering imperfect 
maintenance and an availability constraint. Policies with multiple 
control limits have also been proposed with the aim to improve CBM 
effectiveness and to satisfy different requirements. In [7], a CBM pol-
icy using multi-level control limits was proposed and optimized. The 
degrading system was modeled by a gamma process, and multiple 
control limits were used to determine the current maintenance actions 
and future inspection times. Elwanly et al. [6] analyzed a replacement 
problem for the exponentially increasing degradation system. They 
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W artykule przeanalizowano problem wymiany dotyczący poddawanego przeglądom okresowym systemu ulegającego ciągłej 
degradacji i narażonego na konkurujące zagrożenie uszkodzeniami parametrycznymi i nagłymi. System taki powinien zostać wy-
mieniony na nowy w ramach konserwacji korygującej w przypadku wystąpienia uszkodzenia lub też, ze względów bezpieczeństwa 
i względów ekonomicznych, można dokonać wymiany profilaktycznej jeszcze przed wystąpieniem uszkodzenia. W artykule roz-
ważono przypadek zależnych od siebie uszkodzeń parametrycznych i nagłych. Proces degradacji systemu obserwowany podczas 
przeglądów ma charakter monotonicznie rosnący i można go opisać za pomocą procesu gamma. Intensywność uszkodzeń nagłych 
zależy od wieku systemu i jego stanu degradacji. Formułując problem optymalizacyjny w ramach semi-markowskiego procesu de-
cyzyjnego, można określić formę optymalnej polityki wymiany, która minimalizowałaby długookresowy średni koszt na jednostkę 
czasu, z uwzględnieniem struktury kosztów, która obejmuje koszty przeglądów, koszty wymiany profilaktycznej oraz koszty różnych 
przyczyn uszkodzeń. Opracowano odpowiedni algorytm obliczeniowy umożliwiający ustalenie optymalnej polityki wymiany. Za-
stosowanie proponowanej optymalnej polityki wymiany zilustrowano na przykładzie zbioru rzeczywistych danych.

Słowa kluczowe: utrzymanie ruchu zależne od stanu technicznego urządzeń, przegląd okresowy, zagrożenie 
konkurujące, uszkodzenie parametryczne, uszkodzenie nagłe.
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demonstrated that the optimal replacement policy was a multi-level 
control-limit policy with monotonically increasing control limits. 

However, considering only the soft failure seems to be inad-
equate for the degrading systems that are also subject to the sudden 
failures. In many practical situations, sudden failures are very likely 
to interrupt the graceful degradation and then result in more serious 
consequences. Therefore, in this paper, we consider a competing risk 
maintenance situation. The system is regarded as failed when the 
degradation process reaches a critical threshold or when the sudden 
failure occurs although the degradation process has not reached the 
threshold. Most of the present papers that deal with such failure sce-
nario assume that the degradation process and the sudden failure are 
independent with each other. Nevertheless, even if independence is 
demonstrated to be appropriate for certain types of competing risks, 
e.g. [2, 8, 20, 21], in many situations the dependent structure between 
the two failure modes is of importance and should not be neglected. 
We consider the dependence is described by the failure rate of the 
sudden failure, which is influenced by both the age and the degra-
dation state of the system. Similar assumptions were also found in 
Huynh et al. [9], Liu et al. [15], Castro et al. [3] and Huynh et al. 
[10] to deal with competing risk maintenance situation. A preventive 
threshold in terms of the degradation state was optimized in Huynh 
et al. [9] and Liu et al. [15] with different monitoring strategies. The 
former focused on periodically inspected systems and the latter dealt 
with continuously monitored ones. Castro et al. [13] also considered 
a degradation state - based control limit as the alarm of preventive 
maintenance, but multiple degradation processes were involved in the 
failure mechanism. In Huynh et al. [10], a novel CBM strategy was 
proposed using the mean residual life as the control limit. The effec-
tiveness and potential of condition indices that are not strictly limited 
to failure mechanism in CBM decision-making problems was firstly 
investigated. 

In this paper, we will focus on analyzing the optimal replacement 
policy for a periodically inspected system subject to the competing 
soft and sudden failures. This policy performs the preventive replace-
ment only at inspection instants, and correctively replaces the sys-
tem at the time of failure. We describe the degrading system using 
a gamma degradation process, which implies that the soft failure of 
the system results from a gradual and irreversible accumulation of 
deterioration. The failure rate corresponding to the sudden failure is 
described by a proportional hazards model, which means that it is in-
fluenced by both the age of the system and the state degradation of the 
system. Using the above models, we will show that for a certain group 
of maintenance situations the optimal replacement policy minimizing 
the average cost has a specific form, and it is also in fact a monotoni-
cally non-increasing multi-level control-limit policy. Computational 
algorithm to calculate the optimal multi-level control limits is de-
veloped as well, using a semi-Markov decision process framework. 
Finally, we will present a case study using a real laser data set from 
Meeker and Escorbar [16] to illustrate the proposed policy. 

The paper is organized as follows. Section 2 describes the model 
for system degradation and sudden failures. In Section 3, we present 
the replacement problem. In Section 4, we examine the structure of 
the optimal replacement policy. The computational algorithm to cal-
culate the optimal replacement policy is developed in Section 5. Sec-
tion 6 gives an example based on a real data set. Conclusions are in 
Section 7. 

2. Model of system degradation and sudden failure

2.1. Model of system degradation

We consider a continuously deteriorating system subject to period-
ic inspections. Due to limitations such as difficulty in placing sensors, 
the costs by condition monitoring, the internal structure of the system, 

and etc., not all systems can be continuously monitored. Therefore, 
the periodic monitoring strategy is a typical approach applied in many 
real applications. The degradation state of the system is hidden and 
can only be known by inspections. Generally, due to the physical 
nature of most degradation processes, the degradation state usually 
presents a monotonically increasing (or decreasing) trend. Even some 
fluctuations may occur due to measurement errors, self-recovering 
mechanism, etc., when the inspection interval is long enough, the ob-
served increment between two inspections is still very likely to be 
non-negative. For degradation process involving s-independent and 
non-negative increments, gamma process is an appropriate stochastic 
model to describe it (see e.g. [18]). We assume that the system degra-

dation process { }( ), 0Y t t ≥  starts from a known initial state 0y  and 

follows a gamma process Ga tη γ( ),( ) . Let nY  denote the degradation 

state observed at inspection time nt nh= , 1,2,3,...n = , where h  is 
the inspection interval. Then, the probability density function (pdf) of 

the increment 1n n nz Y Y −= −  in the inspection interval [( 1) , )n h nh−  
has the form:

 f z
z z

z
n n

n

n n

( ) = ( ) −( )
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η η 1 1

1

exp
Γ

 (1)

where η( )t  is a given, monotone increasing function and η ηn nh= ( ) . 
If the soft failure threshold fD  is given, the probability of soft 

failure for the next inspection interval ( , ( 1) ]nh n nh+  conditioning on 
the current observation nY  ( n fY D< ) can be written as:

 Pr | ,T t Y Y D f z dzn n n f zD Y nf n
< <( ) = ( )+ −

+∝
+∫1 1

 (2)

In the following, we use homogeneous gamma process, i.e. 
η η( )t t= , at first for rigorous mathematical derivation of the optimal 
replacement policy. Extensions of the policy to cover a more general 
form of the gamma degradation model will be discussed as well. 

2.2. Model of sudden failure

Sudden failure is a common failure mode which may interrupt a 
graceful degradation. In many practical situations, the sudden failure 
rate is very likely to be influenced by the degradation process. For 
example, the higher the degradation, the more the system is prone to 
sudden failures. Thus, it is reasonable to assume that the failure rate of 
sudden failures depends on the degradation process. In this paper, we 
assume that the failure rate of sudden failures is described by the pro-
portional hazards (PH) model (see e.g. [5]), which explicitly includes 
both the effect of the age and the degradation state. It can be expressed 
by the following relation:

 λ λ θ( , ) ( ; ) ( ); .t Y t Y tt = [ ]0 αα ββ  (3)

where λ0(t;α) denotes baseline failure rate at time t with unknown vec-
tor of parameters α, and θ[Y(t); β]with the unknown vector of param-
eters β is a positive function dependent only on the values of the deg-
radation state ( )Y t . 

Due to the restraint of the periodic inspection policy, the values of 
( )Y t  are only known at some discrete points of time. Thus, we ap-

proximate the failure rate at time t  as:
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 λ λ θ( , ) ( ; ) ( ; ), [( ) , ).t Y t Y if t n h nht n= ∈ −−0 1 1αα ββ  (4)

For the system which has not failed by time nh , if the latest 

observation is nY , the conditional reliability function of surviving 
beyond nh t+  for any 0 t h< <  can be approximated as:

R Y n t T nh t t h T nh Y

s Y ds

n n

nnh
nh

( , , ) Pr( , | , )

exp ( ; ) ( ; )

= > + < >

= −
+ λ θ0 αα ββ

tt
n nh

nh tY s ds∫ ∫{ } = −{ }+exp ( ; ) ( ; ) .θ λββ αα0
  (5)

Then, the expected sojourn time for system to keep operating dur-
ing interval [ , )nh nh a+  ( 0 a h< < ) is given by

τ θ λ( , , ) ( , , ) exp ( ; ) ( ; )Y n a R Y n t dt Y s ds dtn n
a

n nh
nh ta

= = −{ }∫ ∫
+

0 00
ββ αα∫∫ .(6) 

3. The optimal replacement problem

Consider a non-repairable single-unit system described as in Sec-
tion 2. The degradation state of the system is hidden and the soft fail-
ure is non-self-announcing. No indicator can exhibit the degradation 
state except to do an inspection. The system starts working at time 

0t =  and is inspected every h  time units. The inspections are as-

sumed to be perfect and incurred a cost 0C . Three kinds of replace-
ment actions are available on the system:

If the system’s degradation state identified by inspection ex-1. 

ceeds its soft failure threshold fD , a corrective replacement is 

performed with the expected cost 2C C+ .

If sudden failure happens before the degradation state reaches 2. 

the threshold fD , the system is also correctively replaced, 

but with a possibly more expensive expected cost 1C C+   

( 1 2C C> ). 
At the time of inspection, if the system still operates and its 3. 
degradation state observed by inspection is below the soft fail-

ure threshold fD , a preventive replacement may exert on the 
system instantaneously at the expected cost C .

After the replacement, the system is back to as-good-as-new state. 
Even though both the preventive and the corrective maintenance ac-
tions bring the system back to the as-good-as-new state, they are gen-
erally different in practice because the unplanned maintenance actions 
(i.e. corrective replacements) may have to include a larger economic 
loss. Moreover, the corrective replacement for sudden failure is quite 
possible to be more expensive than that for soft failure because of 
its unexpected nature and the damage resulting from physical break-
down.

In addition, we introduce the following assumptions:
Any replacement, whether corrective or preventive, takes neg-1. 
ligible time.

The baseline function 2. λ0( ; )t αα  in the PH model is non-de-
creasing for 0t ≥ .

The link function 3. θ Y t( );ββ[ ]  is a non-decreasing function of 

the degradation state ( )Y t .

The inspection cost 4. 0C  is very small compared to any replace-
ment cost. It is reasonable because condition-monitoring loses 
its significance if the monitoring cost is too high. 

The objective of our replacement policy is to minimize the long-
run expected average cost per unit time g  by performing appropri-
ate preventive replacement. Denote the state space by ( , )Ω = H K , 
where { ; 0,1,2,...}nh n= =H  represents the inspection times and K  
represents the possible states of observed nY . We note that discretiza-
tion of the continuous degradation state is applied in the following 
proof procedure in order to guarantee a finite state space for the policy 
optimization model. We will explain the details of the discretization 
scheme in Section 5. Let ( , )nV n Y  be the relative value function (see 
e.g. [17]) that formulates the relative cost in the infinite-horizon deci-
sion process when the system is currently in state ( , )nn Y ∈Ω , and 

( )1
| ,

nY nF y n Y
+

 be the conditional cumulative distribution function 
(cdf) of 1nY + , then the optimality equations can be expressed as fol-
lows:

 
{ }

2 0

0

(0, ),
( , )

min (0, ), ( , ) ,
n f

n
n n f

C C V Y if Y D
V n Y

C V Y W n Y if Y D

+ + ≥= 
+ <

 (7)
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R Y n h T t Y Y D C C V Y C R Y n h g Y n hτ

+
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∫

(8)
The first line of Eq. (7) describes the situation that if the observed 

degradation state by current inspection exceeds the soft failure thresh-
old fD , we perform an immediate corrective replacement at the ex-
pected cost 2C C+  and put the system back to as-good-as-new state. 
The second line of Eq. (7) proposes the maintenance rule that if the 
observed degradation state is below the soft failure threshold fD , we 
can either choose to preventively replace the system, or do nothing 
and continue operation, depending on the relative costs of the two 
different maintenance actions.

4. Structure of the optimal replacement policy

In this section, we will examine the structure of the optimal 
replacement policy for the replacement problem defined in Section 3. 

Theorem 1. If 1 2 0C C C> + , the relative value function ( , )nV n Y  de-
fined by the second line of Eq. (7) is non-decreasing for ( ), nn Y ∈Ω  
and for any positive constant g . 
Proof. Following the second line of Eq. (7), since

{ }0( , )= min (0, ), ( , )n nV n Y C V Y W n Y+ , 0( , ) (0, )nV n Y C V Y≤ + . Let 
( , )k

nV n Y  denote the relative value function at the k th iteration of 
the value iteration algorithm. We start by defining the initial value:

 0( , ) 0nV n Y =  for any n  (9)

0( , )nV n Y  is non-decreasing for ( , )nn Y ∈Ω . Next, assume that 
( , )k

nV n Y  is non-decreasing for n fY D<  and 0( , ) (0, )k k
nV n Y C V Y≤ +  

are true at the k th iteration, then from Eq. (7), 

 1( , )k
nV n Y+ = min ( , ), ( , )C V Y W n Yk k

n+{ }0 0  (10)

where:
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By induction hypothesis, V n Yk
n,( )  is non-decreasing for 

n Yn,( )∈Ω  if n fY D< . R Y n hn , ,( )  and τ ( , , )Y n hn  in Eq. (11) are 
also non-increasing functions for n Yn,( )∈Ω . Moreover, since we 
consider a homogeneous gamma process, F y n YY nn+ ( )1

| ,  is non-in-

creasing and Pr | ,T t Y Y Dn n n f< <( )+1  defined by Eq. (2) is also 
non-decreasing for n Yn,( )∈Ω . Therefore, if 1 2 0C C C> +  , 
W n Yk

n,( )  is non-decreasing for any positive constant g . Since both 

0(0, )kC V Y+  and ( ),k
nW n Y  in Eq. (10) are non-decreasing, 

1( , )k
nV n Y+  is non-decreasing as well, which completes the proof. 

Based on Theorem 1, we are able to find the form of optimal re-
placement policy by analyzing the optimality equations Eq. (7) and 
Eq. (8).

Theorem 2. Let 0 represent the immediate preventive replacement 
upon observation of the system state, 1 represent the immediate cor-
rective replacement for the soft failure, and + ∝  corresponds to no 

replacements. If 1 2 0C C C> + , the optimal replacement policy has the 
following form:

δ

τ
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n Y

if C R Y n h C C T t Y Y D C g
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n n n n f

=

− ( ) − < <( ) −
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 C g Y n hn0 τ ( , , )

  
(12)

Proof. 
Consider the case if:
C R Y n h C C T t Y Y D C g Y n hn n n n f n1 1 2 1 0− ( ) − < <( ) −



 <+, , Pr | , ( , , )τ , 

then:

W n z C V Y

C R Y n h C R Y n h R Y n h Vn n n
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So that in this case the optimal decision is no replacement.
Consider the case if:  

C R Y n h C C T t Y Y D C g Y n hn n n n f n1 1 2 1 0− ( ) − < <( ) −



 ≥+, , Pr | , ( , , )τ
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which is a contradiction to Theorem 1.
So that if: 

C R Y n h C C T t Y Y D C g Y n hn n n n f n1 1 2 1 0− ( ) − < <( ) −



 ≥+, , Pr | , ( , , )τ , 

the optimal decision is an immediate preventive replacement. This 
establishes the result.

Next, we will show in Theorem 3 that for the replacement prob-
lem defined in Section 3, the optimal replacement policy is a monot-
onically non-increasing multi-level control-limit policy in terms of 
the degradation state. 

Theorem 3. If 1 2 0C C C> + , for all inspection times nt nh= , if the 
observed system state nY  is below the soft failure threshold fD , the 
optimal decision is to preventively replace the system if and only if 

*
n nY w≥ , where *

nw  is the optimal control limit at nt nh= . The con-
trol limit *

nw  is monotonically non-increasing in n . 

Proof. By Theorem 2, consider the condition for the preventive re-
placement:

 

C R Y n h C C T t Y Y D C

Y n h
g

n n n n f

n

1 1 2 1 0− ( ) − < <( ) −



 ≥

+, , Pr | ,

( , , )τ
  (13)

For any nt nh= , the left-hand side of Eq. (13) is non-decreasing 
in nY . Therefore, if *

n fw D∃ <  makes Eq. (13) holds for *
n nY w= , 

then Eq. (13) still holds for any *
n nY w≥ . In other words, given that 

the optimal decision for degradation state at *
n nY w=  is to preven-

tively replace, the optimal decision for degradation state *
n nY w≥  is 

also to preventively replace. Thus, the optimal replacement policy at 
time nt nh=  is a control-limit policy with control limit *

nw . 
On the other hand, since the left-hand side of Eq. (13) is non-

decreasing in n , so that for any nY , there exists a starting time *n h  

such that for any *nh n h≥  the optimal decision is to preventively 

replace the system. By the existence of a control limit *
nw  for each 

inspection time and a starting time *n h  for each degradation state, the 

control limit is *
nw  monotonically non-increasing in n . 

Remark. We only use the homogeneous gamma process to derive the 
above optimal replacement policy. However, the optimality still estab-
lishes using other degradation models, if that Pr | ,T t Y Y Dn n n f< <( )+1  

is non-decreasing for ( , )nn Y ∈Ω  can be validated. The non-decreas-

ing Pr | ,T t Y Y Dn n n f< <( )+1  for ( , )nn Y ∈Ω  indicates two charac-
teristics of a degradation process. Firstly, at the same inspection time, 
the degradation process which has a more severe deterioration would 
have a larger probability of soft failure during next inspection interval; 
secondly, for the same degradation state, the system which is “older” 
would be more likely to confront soft failure for the next inspection 
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interval. These two phenomena can be found in many real situations. 
Even if Pr | ,T t Y Y Dn n n f< <( )+1  is not strictly non-decreasing for 

( , )nn Y ∈Ω , the above replacement policy still might be the optimal 

since ( ), ,nR Y n h , the conditional reliability function of sudden fail-
ure, may dominate the trend of ( ), nW n Y . Similarly, 1 2 0C C C> +  is 
also a quite strong assumption in order to ensure the monotonicity; in 
fact, if ( ), ,nR Y n h  decreases quickly enough as the system ages, the 
theorems still hold. 

5. Computation of the Optimal Replacement Policy

We demonstrate in Section 4 that the optimal replacement policy 
has a specific form, and it is also a multi-level control-limit policy with 
non-increasing control limits *

nw . To apply this policy, it is necessary 
to compute the minimum long-run expected average cost per unit time 
g . We thus develop a computational procedure using semi-Markov 
decision process (SMDP) to obtain g . The computation of SMDP re-

quires discretizing the possible range of values of 0[ , )nY y∈ + ∝  into 

a finite set of states. Define [ , )fD + ∝  as the failure state F . We 

can then divide the continuous state space of 0[ , ]fy D  into L  equi-

distant intervals with constant length 0( ) /fD y L∆ = − . If for some 

fixed integer 0 nk L< < , nk ∆ is defined as the control limit nw  at 

inspection time nt nh= , then the warning state nW  at inspection time 

nt nh=  will be 0 0[ , )nk y L y∆ + ∆ + , and the healthy state nS  will be 

0 0[ , )ny k y∆ + . Thus, we approximate the state space ( , )Ω = H K  by 
a non-decreasing homogeneous Markov chain with countable state 

space considering states ( , )k n , ( , )n nW , ( , )nF .
Based on the above discretization scheme, for the system which 

has not failed by time nt , if nY  is known, the conditional reliability 
function defined in Eq. (5) is calculated as follows:

R Y n t R k n t
T t t h Y y for k n

T nh t tn( , , ) ( , , )
Pr( , | ), ,

Pr( ,
= =

> < = = =

> +
0 0 0 0

<< > = + + ≤ < =







=
−

h T nh Y k y for k k n

y
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exp ( . ) ; ( ; )

s ds for k n

k y s ds
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(14)

Then, the expected sojourn time defined in Eq. (6) is calculated by:

τ τ

θ λ

( , , ) ( , , ) ( , , )

exp ( ; ) ( ; )

Y n a k n a R k n t dt

y s ds

n
a
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= =

=
−{ }
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0 00
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∫
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00

0 1 2a
nfor k k n∫ ≤ < =










, , ,...
  

(15)

Next, we will derive the one-step transition probabilities in the 
SMDP. Using homogeneous gamma process, the probability that 

the value of 1nY +  will be in state l y l y∆ ∆+ + +[ ]0 01,( )  given 

the current value of nY  is in the interval k y k y∆ ∆+ + +[ ]0 01,( ) ,  

0 ,0nk k l L≤ < ≤ < , is calculated by:

p

Y l y l y Y y for k n

k n l n

n

( , ),( , )

Pr ,( ) | , ,

+

+

=

∈ + + +[ ] =( ) = =

1

1 0 0 0 01 0 0∆ ∆

PPr ,( ) | ( . ) , ,Y l y l y Y k y for k k k l Ln n n+ ∈ + + +[ ] = + +( ) ≤ < ≤ <1 0 0 01 0 5 0∆ ∆ ∆ ,, , ,...
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− −

0 1
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ll k− +
∫

0 5. ) .∆

(16)

Similarly, the probability that the value of 1nY +  will be in the 

warning state 1n+W  given the current value of nY  is in the interval 

k y k y∆ ∆+ + +[ ]0 01,( ) , 0 nk k≤ < , is calculated by:

p
Y Y y for k n

Yk n n
n n

n n
n( , ),( , )

Pr | , ,

PrW
W
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+ +
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(17)

Moreover, the probability that the value of 1nY +  will be in the 

failure region determined by state F  given the current value of nY  is 

in the interval k y k y∆ ∆+ + +[ ]0 01,( ) , 0 nk k≤ < , is calculated by:

p
Y Y y for k n

Y Y kk n n
n

n n
( , ),( , )

Pr | , ,
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(18)

With the definition of the state space, for a fixed control lim-

it χ , the warning state nW  at inspection time nt nh=  will be 

0 0[ , )nk y L y∆ + ∆ + , where nk  can be approximated by

kn k C R k n h C C T t Y k y k L C kn n= − − < = + < − ≥( ) ( )( )+min ; , , Pr | , ( ,1 1 2 1 0 0∆ χτ nn h, ){ }  
(19)

If nk L≥ , only corrective replacement is allowed at inspection 

time nt nh= ; and if 0nk ≤ , the system should stop operating at in-

spection time nt nh=  with an immediate preventive or corrective re-
placement. The smallest time to stop operating and enforce replace-

ment is defined as t n hχ χ=  . Thus, the determination of a control limit 

χ  can be transformed into determining the nχ . For a fixed integer 

nχ , the corresponding control limit χ  is given by:

 χ
χ χ

χτ
=

C R n h C C T t Y y Cn n

n h
1 1 2 1 0 00

0

− ( ) − < =( ) −





( )
+, , Pr |

, ,







     (20)

Once all of the quantities above are defined, for a fixed integer 
nχ , the long-run expected average cost per unit time ( )g χ  for the 
competing risk of soft and sudden failure can be obtained by solving 
the following systems of linear equations (see e.g. [17]):
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where ( , )V • •  is the same relative value function as defined in Section 
3, considering discretized degradation states. 

So that the optimal control limit χ*  and corresponding minimum 
long-run expected average cost per unit time g( )*χ  can be found 
by:

 g g
n

( ) inf{ ( )}*χ χ
χ

=


. (22)

A stopping rule for determining an appropriate L  to partition the 
continuous state space 0[ , ]fy D  is needed in this algorithm, which 
could be:

 g L g LU U( | ) ( | ) .* *χ χ δ= − = ≤+2 21  (23)

where U  is positive integer and δ  is the selected small number. 

6. Case study
In this section, we use a real degradation data presented by Meek-

er and Escobar [16] (Chapter 13, Example 13.5) to illustrate the appli-
cation of our proposed optimal replacement policy. This data set con-
sists of 20 degradation histories, describing the degradation process of 
some GaAs lasers subject to the competing soft and sudden failures. 
During the life of GaAs lasers, the degradation causes an increase in 
the laser’s operating current. The laser is considered to be failed if the 
operating current increases to fD  percent of its original value. On 
the other hand, physical breakdown due to the sudden failures may 
also occur and consequently interrupts the graceful degradation. For 
illustration purpose, we assume 5fD =  as the soft failure threshold, 
and the operating currents were inspected every 100h =  hours up to 
τ = 2000  hours or until the sudden failure happens. The degradation 
paths are plotted in Fig.1, in which 13 out of 20 degrade gradually till 
the censored time, while the other 7 samples show a sharp increase in 
operating current when the sudden failure occurs.

First, we fit the data using the model described in Section 2. We 
assume the baseline hazard function is Weibull hazard function de-
noted as λ ρ σρ ρ

0
1( ) /t t= −  and the function to quantify the effect of 

system degradation state on the failure rate is exponential having the 
form θ ( ) expY cYt t= ( ) , where c  is a real coefficient. Using joint like-
lihood function and the interior-reflective Newton method, we obtain 
the ML estimates for the model parameters, as shown in Table 1.

In order to validate the fitted model, we use the probability plot to 
assess whether the increments of laser degradation follow the gamma 
process Ga hη γ,( )  and compare the ML estimates with non-paramet-

ric Kaplan-Meier estimates for the PH model. Fig. 2 and Fig. 3 show 
the results, demonstrating that the fitted model is well suited for the 
laser data. Note that in Fig. 3, we approximate the cumulative distri-
bution function by:

 
F nh t Y t c dt cE Ynh

k( ) exp ( ; , ) ( ); exp exp= − − [ ]( ) = − − ( ) ∫1 100
λ ρ σ θ ρρ αρ ρt dtkh

k h

k

n
−+

=

−

∫∑










11

0

1
/ .( )

(24)

Next, we consider the following replacement costs to illustrate our 

replacement policy: 0 100C = , 1000C = , 1 4000C = , 2 3000C = . Since 

1 2 0C C C> + , the optimal replacement policy proposed in Section 4 
is applicable to this case. We partition the continuous state space of 

0 0, 5fy D = =   into 128L =  intervals. The long-run expected aver-

age cost per thousand hours g( )χ  for different control limits χ  are 
plotted in Fig.4, in which we can find the minimum long-run expected 
average cost per thousand hours is g( ) .*χ =1586 052  with the optimal 

control limit χ* .=1587 573. Using the control limit χ* .=1587 573, 

the optimal control limits *
nw  in terms of degradation level at each 

inspection time nt nh=  presents a decreasing trend in time, as shown 

in Fig. 5. When the observed degradation level nY  exceeds *
nw , the 

optimal maintenance policy is to preventively replace the system. We 
demonstrate the appropriateness of 128L =  using the stopping rule of 
Eq. (23). The results are shown in Table 2. 

Table 1. ML estimates for the model parameters

Parameters η γ ρ σ c

ML estimates 4.7676 19.5353 1.3932 8.3859 0.3540

Fig. 1. Degradation paths for the laser data

Fig.2. Probability plot of the increments for the laser data

(21)
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7. Conclusion

In this paper, we have investigated the optimal replacement policy 
for a periodically inspected system subject to the competing risk of 
soft and sudden failures. This policy focuses on the system whose 

degradation process can be described by a gamma process and sudden 
failure rate by a PH model. If the preventive replacement only per-
forms at inspection times and the sudden failure dominates in the fail-
ure mechanism, it is demonstrated that the optimal replacement policy 
has a specific form and it is actually a multi-level control-limit policy 
with control limits in terms of the degradation level. A computational 

algorithm based on a SMDP framework has also been developed to 
obtain the optimal replacement policy. The entire procedure of apply-
ing this policy is illustrated by a real laser example. 

Table 2. χ*  and g( )*χ  under different combinations of L  

L 16 32 64 128 256

χ* 1521.154 1538.410 1570.134 1587.573 1590.965

g( )*χ 1520.362 1538.742 1569.721 1586.052 1590.750

Fig. 3. ML estimates and the Kaplan-Meier estimates for the marginal CDF 
of sudden failure times

Fig. 5. The optimal control limits wn
*  at each inspection time

Fig. 4. The long-run expected average costs per thousand hours for different 
control limits
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