PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dissolution behavior of sulfur and some metals from spent petroleum catalysts by alkaline solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The petroleum refining industry produces a large amount of spent catalysts which contain sulfur and some valuable metals. During the recovery of these valuable metals, sulfur should be processed and removed from the surface of the spent catalyst. Several chemical reagents including NaOH, Na2CO3, H2O2, CS2, and decanol were employed to investigate the removal of sulfur from the spent catalysts. NaOH and ultrasound-assisted oxidative treatment with H2O2 showed better performance than the other reagents for the removal of sulfur from spent catalyst. Sulfur and valuable metals dissolved together to the solution by using ultrasound-assisted oxidative treatment with H2O2, while the covered sulfur was removed from the spent catalyst without affecting the dissolution of valuable metals. The removal of sulfur as well as the leaching of valuable metals was discussed on the basis of oxidation and reduction reaction. The optimum conditions for sulfur removal were chosen as follows: temperature, 600C; pulp density, 20 g/dm3; reaction time, 1.5 h; stirring speed, 800 rpm; and NaOH concentration, 0.5 M. The obtained results can be applied to develop an environment-friendly process to treat sulfur from the spent catalysts.
Słowa kluczowe
Rocznik
Strony
1217--1226
Opis fizyczny
Bibliogr. 20 poz., rys., wz.
Twórcy
autor
  • Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University, Chonnam, 534-729, Republic of Korea
autor
  • Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University, Chonnam, 534-729, Republic of Korea
Bibliografia
  • AUSTIN, J.M., JENSEN, D., MEYER, B., 1971. Solubility of sulfur in liquid sulfur dioxide, carbon disulfide, and carbon tetrachloride. J. Chem. Eng. Data 16, 364–366.
  • BARIK, S.P., PARK, K.H., PARHI, P.K., PARK, J.T., NAM, C.W., 2012. Extraction of metal values from waste spent petroleum catalyst using acidic solutions. Sep. Purif. Technol. 101, 85–90.
  • CHRISTIANSEN, A.F., FJELLVÅG, H., KJEKSHUS, A., KLEWE, B., 2001. Synthesis and characterization of molybdenum(VI) oxide sulfates and crystal structures of two polymorphs of MoO2(SO4). J. Chem. Soc. Dalt. Trans. 2, 806–815.
  • DUARTE, F.A., MELLO, P. DE A., BIZZI, C.A., NUNES, M.A.G., MOREIRA, E.M., ALENCAR, M.S., MOTTA, H.N., DRESSLER, V.L., FLORES, É.M.M., 2011. Sulfur removal from hydrotreated petroleum fractions using ultrasoundassisted oxidative desulfurization process. Fuel 90, 2158–2164.
  • DUFRESNE, P., 2007. Hydroprocessing catalysts regeneration and recycling. Appl. Catal. A Gen. 322, 67–75.
  • KIM, D.J., MISHRA, D., AHN, J.G., CHAUDHURY, G.R., RALPH, D.E., 2009. A novel process to treat spent petroleum catalyst using sulfur-oxidizing lithotrophs. J. Environ. Sci. Heal. Part A 44, 1585–1591.
  • KIM, D.J., SRICHANDAN, H., GAHAN, C.S., LEE, S.W., 2012. Thermophilic bioleaching of spent petroleum refinery catalyst using Sulfolobus metallicus. Can. Metall. Q. 51, 403–412.
  • LELIEUR, J., DEMORTIER, A., LEVILLAIN, E., 1991. Recent developments in the understanding of solutions of sulfur in liquid ammonia. J. Phys. 01, 209–216.
  • MARAFI, M., STANISLAUS, A., 2011. Waste catalyst utilization: Extraction of valuable metals from spent hydroprocessing catalysts by ultrasonic-assisted leaching with acids. Ind. Eng. Chem. Res. 50, 9495–9501.
  • MARAFI, M., STANISLAUS, A., 2008a. Spent catalyst waste management: A review. Part I-Developments in hydroprocessing catalyst waste reduction and use. Resour. Conserv. Recycl. 52, 859–873.
  • MARAFI, M., STANISLAUS, A., 2008b. Spent hydroprocessing catalyst management: A review. Part II. Advances in metal recovery and safe disposal methods. Resour. Conserv. Recycl. 53, 1–26.
  • MARAFI, M., STANISLAUS, A., 2003. Options and processes for spent catalyst handling and utilization. J. Hazard. Mater. 101, 123–132.
  • MISHRA, D., CHAUDHURY, G.R., KIM, D.J., AHN, J.G., 2010. Recovery of metal values from spent petroleum catalyst using leaching-solvent extraction technique. Hydrometallurgy 101, 35–40.
  • PARK, K.H., MOHAPATRA, D., REDDY, B.R., 2006a. Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method. J. Hazard. Mater. 138, 311–316.
  • PARK, K.H., REDDY, B.R., MOHAPATRA, D., NAM, C.W., 2006b. Hydrometallurgical processing and recovery of molybdenum trioxide from spent catalyst. Int. J. Miner. Process. 80, 261–265.
  • RAYNER-CANHAM, G., OVERTON, T., 2013. Descriptive inorganic chemistry, 6th ed. W. H. Freeman and Company, New York, USA.
  • REN, Y., SHUI, H., PENG, C., LIU, H., HU, Y., 2011. Solubility of elemental sulfur in pure organic solvents and organic solvent–ionic liquid mixtures from 293.15 to 353.15K. Fluid Phase Equilib. 312, 31–36.
  • U.S. EPA, 2008. Integrated science assessment (ISA) for sulfur oxides - health criteria. Washington, D.C.
  • WANG, R., SHEN, B., SUN, H., ZHAO, J., 2018. Measurement and correlation of the solubilities of sulfur S8 in 10 solvents. J. Chem. Eng. Data 63, 553–558.
  • ZENG, L., CHENG, C.Y., 2009. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts. Part I: Metallurgical processes. Hydrometallurgy 98, 1–9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-097cc597-8179-4be3-8c68-ce44e5e647db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.