PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two-extremum electrostatic potential of metal-lattice plasma and the work function of an electron

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Metal-lattice plasma is treated as a neutral two-component two-phase system of 2D surface and 3D bulk. Free electron density and bulk chemical potential are used as intensive parameters of the system with the phase boundary position determined in the crystalline lattice. A semiempirical expression for the electron screened electrostatic potential is constructed using the lattice-plasma polarization concept. It comprises an image term and three repulsion/attraction terms of second and fourth orders. The novel curve has two extremes and agrees with certain theoretical forms of potential. A practical formula for the electron work function of metals and a simplified schema of electronic structure at the metal/vacuum interface are proposed. This yields 10.44 eV for the Fermi energy of free electron gas; ~5.817 eV for the Fermi energy level; 4.509 eV for the average work function of bcc tungsten. Selected data are also given for fcc Cu and hcp Re. For harmonic frequencies 10E16 per s of the self-excited metal-lattice plasma, energy gaps of 14.54 and 8.02 eV are found, which correspond to the bulk and surface plasmons, respectively. Further extension of this thermodynamics and metal-lattice theory based approach may contribute to a better understanding of theoretical models which are employed in chemical physics, catalysis and materials science of nanostructures.
Wydawca
Rocznik
Strony
430--444
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
autor
  • Institute of Experimental Physics, University of Wroclaw, Plac Maxa Borna 9, 50-204 Wroclaw, Poland
autor
  • Institute of Experimental Physics, University of Wroclaw, Plac Maxa Borna 9, 50-204 Wroclaw, Poland
autor
  • Institute of Experimental Physics, University of Wroclaw, Plac Maxa Borna 9, 50-204 Wroclaw, Poland
Bibliografia
  • [1] ZIMAN J.M., Principles of the Theory of Solids, Cambridge University Press, Cambridge/New York/Melbourne 1972.
  • [2] HARRISON W.A., Pseudopotentials in The Theory of Metals, W.A. Benjamin Inc., New York/Amsterdam 1966.
  • [3] SCHWERDTFEGER P., Chem. Phys. Chem., 12 (2011), 3143.
  • [4] LANG N.D., KOHN W., Phys. Rev. B, 1 (1970), 4555.
  • [5] LANG N.D., KOHN W., Phys. Rev. B, 3 (1971), 1215.
  • [6] LANG N.D., KOHN W., Phys. Rev. B, 7 (1973), 3541.
  • [7] HOHENBERG P., KOHN W., Phys. Rev. B, 136 (1964), 864.
  • [8] TAVARES F.W., PRAUSNITZ J.M., Colloid Polym. Sci., 282 (2004), 620.
  • [9] ROTHSCHILD J.A., EIZENBERG M., Phys. Rev. B, 81 (2010), 224201.
  • [10] BRODIE I., Phys. Rev. B, 51 (1995), 13660.
  • [11] BRODIE I., CHOU S.H., YUAN H., Surf. Sci., 625 (2014), 112.
  • [12] HALAS S., DURAKIEWICZ T., J. Phys.-Condens. Mat., 10 (1998), 10815.
  • [13] DURAKIEWICZ T., HALAS S., ARKO A., JOYCE J.J., MOORE D.P., Phys. Rev. B, 64 (2001), 045101.
  • [14] YOUNG R.D., Phys. Rev., 113 (1959), 110.
  • [15] APPELBAUM J.A., HAMANN D.R., Phys. Rev. B, 6 (1972), 1122.
  • [16] SURMA S.A., Phys. Status Solidi A, 183 (2001), 307.
  • [17] MEYER B., The Pseudopotential Plane Wave Approach, in: GROTENDORST J., BLUEGEL S., MARX D. (Eds.), Computational Nanoscience: Do It Yourself!, NIC Series, John von Neumann Institute for Computing, Juelich, 2006, p. 71, Fig. 3; CLARK S.J., Complex structures in tetrahedrally bonded semiconductors, Ph.D. thesis, University of Edinburgh, http://cmt.dur.ac.uk/sjc/thesise-copy, 1994, p. 30, Fig. 3.4.
  • [18] MACKENZIE J.K., MOORE A.J.W., NICHOLAS J.F., J. Phys. Chem. Solids, 23 (1962), 185; MACKENZIE J.K., NICHOLAS J.F., J. Phys. Chem. Solids, 23 (1962), 197; NICHOLAS J.F., An Atlas of Models of Crystal Surfaces, Gordon & Breach, New York/London/Paris, 1965, p. 1.
  • [19] SMOLUCHOWSKI R., Phys. Rev., 60 (1941), 661.
  • [20] YAVORSKI B.M., DETLAF A.A., Spravochnik po fizike, Nauka, Moscow, 1990.
  • [21] RAIMES S., TheWave Mechanics of Electrons in Metals, North-Holland, Amsterdam, 1961.
  • [22] KITTEL C., Introduction to Solid State Physics, John Wiley & Sons, 1996.
  • [23] FEYNMAN R.P., LEIGHTON R.B., SANDS M., The Feynman Lectures on Physics, Addison-Wesley, Reading, Ma., 1965.
  • [24] ARTSIMOVICH L.A., Elementarnaya fizika plazmy, Atomizdat, Moscow, 1969.
  • [25] VAN MEERSSCHE M., FENEAU-DUPONT J., Introduction a la cristallographie et a la chimie structural, OYEZ, Leuven/Bruxelles/Paris, 1976.
  • [26] DEREN J., HABER J., PAMPUCH R., Chemia Ciala Stalego, PWN, Warszawa, 1975.
  • [27] KIEJNA A., WOJCIECHOWSKI K.F., Metal Surface Electron Physics, Pergamon, Oxford, 1996.
  • [28] SWANSON L.W., DAVIS P.R., Work function measurements, in: PARK R.L., LAGALLY M.G. (Eds.), Methods of Experimental Physics, vol. 22, Solid State Physics: Surfaces, Academic Press, Orlando, Fl., 1985, p. 1.
  • [29] ASHCROFT N.W., MERMIN N.D., Solid State Physics, Holt, Rinehart and Winston, New York, 1976.
  • [30] VAN DER ZIEL A., Solid State Physical Electronics, Prentice Hall, Englewood Cliffs, NJ., 1976.
  • [31] DOBRETSOV L.N., GOMOYUNOVA M.V., Emissionnaya Elektronika, Nauka, Moscow, 1966.
  • [32] WIGNER E.P., BARDEEN J., Phys. Rev., 48 (1935), 84.
  • [33] BARDEEN J., Phys. Rev., 49 (1936), 653.
  • [34] HERRING C., NICHOLS M.H., Rev. Mod. Phys., 21 (1949), 185.
  • [35] KORYTA J., DVORAK J., BOHACKOVA V., Lehrbuch der Elektrochemie, Springer, Wien/New York, 1975.
  • [36] LANDAU L.D., LIFSHITS E.M., Quantum Mechanics, Pergamon, London, 1958.
  • [37] TSONG T.T., MUELLER E.W., Phys. Rev., 181 (1969), 530.
  • [38] LI W., LI D.Y., Phys. Status Solidi A, 196 (2003), 390.
  • [39] FEYNMAN R.P., Statistical Mechanics. A Set of Lectures, W.A. Benjamin, New York, 1972, Fig. 2.3 and 4.1 and related text; FEYNMAN R.P., Quantum Electrodynamics, W.A. Benjamin, New York, 1961, Fig. 11.
  • [40] ONO M., NISHIGATA Y., NISHIO T., EGUCHI T., HASEGAWA Y., Phys. Rev. Lett., 96 (2006), 016801.
  • [41] ONO M., NISHIO T., AN T., EGUCHI T., HASEGAWA Y., Appl. Surf. Sci. 256 (2009), 469.
  • [42] DURAKIEWICZ T., Phys. Rev. B, 61 (2000), 11166.
  • [43] JANSSENS T.V.W., CASTRO G.R., WANDELT. K., NIEMANTSVERDRIET J.W., Phys. Rev. B, 49 (1994), 14599.
  • [44] KHOKONOV K.B., ZADUMKIN S.N., Zavisimost raboty wykhoda ot razmerov chastits, in: OVSENKO D.YE. (Ed.), Rost i Nesovershenstva Metallicheskikh Kristallov, Naukova Dumka, Kiev, 1966, p. 304.
  • [45] TODD C.J., RHODIN T.N., Surf. Sci., 36 (1973), 353.
  • [46] SUN C.Q., Prog. Solid State Ch., 35 (2007), 1.
  • [47] YOUNG R.D., CLARK H.E., Phys. Rev. Lett., 17 (1966), 351.
  • [48] DRECHSLER M., The Equilibrium Shape of Metal Crystals, in: VU THIEN BINH (Ed.), Surface Mobilities on Solid Materials, Plenum Press, New York/London, 1983, p. 405.
  • [49] EFRIMA S., Surf. Sci., 107 (1981), 337.
  • [50] WOJCIECHOWSKI K.F., Mod. Phys. Lett. B, 12 (1998), 685.
  • [51] GUMBS G., KOGAN E., Phys. Status Solidi B, 244 (2007), 3695.
  • [52] MIZERSKI W., Tablice Chemiczne, Adamantan, Warszawa, 1997.
  • [53] MUELLER E.W., TSONG T.T., Field Ion Microscopy – Principles and Applications, American Elsevier, New York, 1969, p. 70.
  • [54] KELLOG G.L., TSONG T.T., COWAN P., Surf. Sci., 70 (1978), 485.
  • [55] SMITH J.R., Phys. Rev., 181 (1969), 522.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0973bdef-61be-4c64-b50a-70c41ecea4d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.