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1. INTRODUCTION

In this paper we consider the following impulsive nonlinear fractional boundary value
problem

tD
α
T (c0Dα

t u(t)) + a(t)u(t) = λf(t, u(t)) + h(u(t)), t 6= tj , a.e. t ∈ [0, T ],
∆
(
tD

α−1
T (c0Dα

t u)
)

(tj) = µIj(u(tj)), j = 1, . . . , n,
u(0) = u(T ) = 0,

(Dλ,µ)

where α ∈ (1/2, 1], a ∈ C([0, T ]) and there are two positive constants a1 and a2
such that 0 < a1 ≤ a(t) ≤ a2 for every t ∈ [0, T ], λ and µ are two non-negative
real parameters, f : [0, T ] × R → R is an L1-Carathéodory function, h : R → R is
a Lipschitz continuous function with the Lipschitz constant L > 0, i.e.,

|h(x1)− h(x2)| ≤ L|x1 − x2|
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for every x1, x2 ∈ R and h(0) = 0, 0 = t0 < t1 < . . . < tn < tn+1 = T ,

∆
(
tD

α−1
T (c0Dα

t u)
)

(tj) = tD
α−1
T (c0Dα

t u) (t+j )− tD
α−1
T (c0Dα

t u) (t−j ),

tD
α−1
T (c0Dα

t u) (t+j ) = lim
t→t+

j

(tDα−1
T (c0Dα

t u) (t)),

tD
α−1
T (c0Dα

t u) (t−j ) = lim
t→t−

j

(tDα−1
T (c0Dα

t u) (t))

and Ij : R→ R, j = 1, . . . , n are continuous functions.
Fractional differential equations (FDEs) have gained importance due to their nu-

merous applications in various fields of science and engineering, such as physics, bio-
physics, blood flow phenomena, aerodynamics, electro magnetic, fluid flow, diffusive
transport akin to diffusion, chemistry, electron-analytical chemistry, electro dynamics
of complex medium, polymer rheology, viscoelasticity, control, porous media, proba-
bility, electrical networks, biology, etc. For details, see [13,17,18,28,31,33,37,39,44].
Many researchers have studied the existence of solutions for nonlinear FDEs with
different tools such as fixed-point theorems, the topological degree theory, and the
method of upper and lower solutions, for instance, see [5, 6, 20].

Critical point theory has been very useful in determining the existence of solution
for integer order differential equations with some boundary conditions, for exam-
ple [11, 35, 38, 45]. But until now, there are few results on the solution to fractional
boundary value problems which were established by the critical point theory, since
it is often very difficult to establish a suitable space and variational functional for
fractional boundary value problems. Recently, Jiao and Zhou in [29] by using the
critical point theory investigated the fractional boundary-value problem

d

dt

(1
2 0D

−β
t (u′(t)) + 1

2 tD
−β
T (u′(t))

)
+∇F (t, u(t)) = 0, a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,
(1.1)

where 0D
−β
t and tD

−β
T are the left and right Riemann-Liouville fractional integrals

of order 0 ≤ β < 1 respectively, F : [0, T ] × RN → R is a given function and
∇F (t, x) is the gradient of F at x. Also, Chen and Tang in [10] studied the existence
and multiplicity of solutions for the fractional boundary value problem (1.1) where
F (t, ·) are superquadratic, asymptotically quadratic, and subquadratic, respectively.
In particular, Bai in [1] by a local minimum theorem investigated the existence of at
least one non-trivial solution to a nonlinear fractional boundary value problem. In [19]
the authors using critical point theory, discussed the existence of multiple solutions
of the system of fractional boundary value problems of the form (1.1). In fact, they
found sufficient conditions under which the problem has at least two or infinitely
many nontrivial solutions. In [2,15,21,22,32,40–43] by using variational methods and
critical point theory the existence of multiple solutions for fractional boundary value
problems was investigated, and in [16] the authors exploited a critical point result for
differentiable functionals in order to prove that a suitable class of one-dimensional
fractional problems admits at least one non-trivial solution under an asymptotical
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behaviour of the nonlinear datum at zero. We also refer to the paper [27] in which
using variational methods the existence of one weak solution for a class of fractional
differential systems was investigated.

On the other hand, impulsive differential equations appear as the natural
descriptions of the observed evolutionary phenomena of several real problems in bi-
ology, physics, engineering, etc. For example, many biological phenomena involving
thresholds, bursting rhythm models in medicine and biology, optimal control mod-
els in economics and frequency modulated systems, do exhibit impulsive effects. For
the general aspects and applications of impulsive differential equations, we refer the
reader to [4, 7, 34, 36, 49]. The existence of multiple solutions of impulsive problems
has been studied also using the variational methods and critical point theorems (see
[14,23]). Both FDEs and impulsive differential equations have drawn intense attention
from researchers in the last decades due to the numerous applications. The idea that
combining these two classes of differential equations may yield an interesting and
promising object of investigation, viz., impulsive FDEs, prompted numerous papers.
For the recent developments in theory and applications of impulsive FDEs, we refer
the reader to the papers [12,51,52] and the references therein. Impulsive problems for
fractional equations have been treated by topological methods in [3,30]. In particular,
in [8, 47] based on variational methods the existence and multiplicity of solutions for
the problem (Dλ,µ), in the case h(x) = 0 for all x ∈ R was studied.

We also refer the reader to [25,26] in which using variational methods and critical
point theory the existence of multiple solutions for impulsive fractional differential
systems were discussed.

Motivated by the above works, in this paper we are interested to investigate the
existence of at least three non-trivial classical solutions for (Dλ,µ) for appropriate val-
ues of the parameters λ and µ belonging to real intervals. Our approach is variational
methods and a three critical points theorem due to Ricceri [46].

Here, we state a special case of our main result.
Theorem 1.1. Let f : R → R be a continuous function and Ij : R → R be
a continuous function for j = 1, . . . , n, and h : R → R be a Lipschitz continuous
function with the Lipschitz constant L such that

0 < L < (2α− 1)Γ2(α), h(0) = 0.

Assume that there exists a positive constant ε such that

max
{

lim sup
u→0

u∫
0
f(ξ)dξ

|u|2 , lim sup
|u|→∞

u∫
0
f(ξ)dξ

|u|2

}
< ε <

(
1− L

(2α−1)Γ2(α)

) 1∫
0

w(t)∫
0
f(ξ)dξdt

A(α)δ2 − 2
1∫
0

w(t)∫
0
h(ξ)dξdt+ 2

3

.

where

w(t) =





4t, if t ∈ [0, 1
4 ),

1, if t ∈ [ 1
4 ,

3
4 ],

4(1− t), if t ∈ ( 3
4 , 1]
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and

A(α) := 1
Γ2(1− α)42α−1

6α2 − 19α+ 16
(1− α)2(2− α)(3− 2α) .

Then, for each compact interval [c, d] ⊂ (λ′′1 , λ′′2), where

λ′′1 = inf
{ |u|2α − 2

1∫
0

w(t)∫
0
h(ξ)dξdt

2
1∫
0

u(t)∫
0
f(ξ)dξdt

: u ∈ C∞0 ([0, 1]), u(0) = u(1) = 0,

f(ξ) > 0 for all ξ ∈ R

}

and

λ′′2 =
(

max
{

0, lim sup
|u|→0

2
1∫
0

u(t)∫
0
f(ξ)dξdt

|u|2α − 2
1∫
0

w(t)∫
0
h(ξ)dξdt

, lim sup
|u|α→+∞

2
1∫
0

u(t)∫
0
f(ξ)dξdt

|u|2α − 2
1∫
0

w(t)∫
0
h(ξ)dξdt

})−1

with

|u|α =


Γ−2(1− α)

1∫

0


 d

dt

t∫

0

(t− s)−αu′(s)ds


dt+

1∫

0

|u(t)|2dt




1
2

,

there exists R > 0 with the following property: for every λ ∈ [c, d] there exists γ > 0
such that, for each µ ∈ [0, γ], the problem

tD
α
1 (c0Dα

t u(t)) + u(t) = λf(u(t)) + h(u(t)), t 6= tj , a.e. t ∈ [0, 1],
∆
(
tD

α−1
1 (c0Dα

t u)
)

(tj) = µIj(u(tj)), j = 1, . . . , n,
u(0) = u(1) = 0

has at least three classical solutions u1, u2 and u3 such that |ui|α < R, i = 1, 2, 3.

2. PRELIMINARIES

In this section, we will introduce some notations, definitions and preliminary facts
which will be used throughout this paper.
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Definition 2.1 ([31]). Let f be a function defined on [a, b] and α > 0. The left and
right Riemann-Liouville fractional integrals of order α for the function f are defined
by

aD
−α
t f(t) = 1

Γ(α)

t∫

a

(t− s)α−1f(s)ds, t ∈ [a, b],

tD
−α
b f(t) = 1

Γ(α)

b∫

t

(s− t)α−1f(s)ds, t ∈ [a, b],

provided the right-hand sides are pointwise defined on [a, b], where Γ(α) is the gamma
function.
Definition 2.2 ([31]). Let a, b be real numbers and denote by AC([a, b]) the space
of absolutely continuous functions on [a, b]. For 0 < α ≤ 1, f ∈ AC([a, b]) there are
defined left and right Riemann-Liouville and Caputo fractional derivatives as follows:

aD
α
t f(t) ≡ d

dtaD
α−1
t f(t) = 1

Γ(1− α)
d
dt

t∫

a

(t− s)−αf(s)ds,

tD
α
b f(t) ≡ − d

dt tD
α−1
b f(t) = − 1

Γ(1− α)

b∫

t

(s− t)−αf(s)ds,

c
aD

α
t f(t) ≡ cDα

a+f(t) := aD
α−1
t f ′(t) = 1

Γ(1− α)

t∫

a

(t− s)−αf ′(s)ds

and

c
tD

α
b f(t) ≡ cDα

b−f(t) := −tDα−1
b f ′(t) = − 1

Γ(1− α)

b∫

t

(s− t)−αf ′(s)ds,

where Γ(α) is the gamma function. Note that when α = 1, caD1
t f(t) = f ′(t) and

c
tD

1
bf(t) = −f ′(t)
We have the following property of fractional integration.

Proposition 2.3 ([31,48]). We have the following property of fractional integration
b∫

a

[aD−γt f(t)]g(t)dt =
b∫

a

[tD−γb g(t)]f(t)dt, γ > 0,

provided that f ∈ Lp([a, b],RN ), g ∈ Lq([a, b],RN ) and p ≥ 1, q ≥ 1, 1/p+1/q ≤ 1+γ
or p 6= 1, q 6= 1, 1/p+ 1/q = 1 + γ.
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To construct appropriate function spaces and apply critical point theory to in-
vestigate the existence of solutions for problem (Dλ,µ), we need the following basic
notations and results which will be used in the proofs of our main results.

Let 0 < α ≤ 1, 1 < p < ∞ and Eα,p0 (0, T ) be the Banach space, which is closure
of C∞0 ([0, T ]) with respect to the norm

‖u‖p
Eα,p0 (0,T ) = ‖c0Dα

t u(t)‖pLp(0,T ) + ‖u‖pLp(0,T ).

It is known that Eα,p0 (0, T ) is a reflexive and separable Banach space (see [29, Propo-
sition 3.1]). Denote for short Eα,20,T = Eα, and by ‖ · ‖ and ‖ · ‖∞ the norms in L2(0, T )
and C([0, T ]):

‖u‖2 =
T∫

0

|u(t)|2dt, u ∈ L2(0, T ),

‖u‖∞ = max
t∈[0,T ]

|u(t)|, u ∈ C([0, T ]).

Eα is a Hilbert space with the inner product

(u, v)α =
T∫

0

(c0Dα
t u(t) c0Dα

t v(t) + u(t)v(t))dt

and the norm

‖u‖2α =
T∫

0

(|c0Dα
t u(t)|2 + |u(t)|2)dt.

Note that if a ∈ C([0, T ]) and there are two positive constants a1 and a2, such that
0 < a1 ≤ a(t) ≤ a2, an equivalent norm in Eα is

‖u‖2a,α =
T∫

0

(|c0Dα
t u(t)|2dt+ a(t)|u(t)|2)dt.

Proposition 2.4 ([29]). Let 0 < α ≤ 1. For u ∈ Eα, we have

‖u‖ ≤ Tα

Γ(α+ 1)‖
c
0D

α
t u‖. (2.1)

Moreover, for 1
2 < α ≤ 1,

‖u‖∞ ≤
Tα−1/2

Γ(α)(2α− 1)1/2 ‖
c
0D

α
t u‖.

According to (2.1), we can consider Eα with respect to the norm

‖u‖0,α =
( T∫

0

|c0Dα
t u(t)|2dt

)1/2

= ‖c0Dα
t u‖, u ∈ Eα

in the following analysis.



Existence of three solutions. . . 287

By Proposition 2.4, when α > 1/2, for each u ∈ Eα we have

‖u‖∞ ≤ k
( T∫

0

|c0Dα
t u(t)|2dt

)1/2

= k‖u‖0,α < k‖u‖a,α, (2.2)

where
k = Tα−

1
2

Γ(α)
√

2α− 1
. (2.3)

Definition 2.5. A function

u ∈
{
u ∈ AC([0, T ]) :

tj+1∫

tj

(|c0Dα
t u(t)|2 + |u(t)|2)dt <∞, j = 0, . . . n

}

is said to be a classical solution of problem (Dλ,µ) if u satisfies the equation

tD
α
T (c0Dα

t u(t)) + a(t)u(t) = λf(t, u(t)) + h(u(t)), a.e. t ∈ [0, T ]\{t1, . . . , tn},

the limits tD
α−1
T (c0Dα

t u) (t+j ) and tD
α−1
T (c0Dα

t u) (t−j ) exist and satisfy the im-
pulsive condition ∆

(
tD

α−1
T (c0Dα

t u)
)

(tj) = µIj(u(tj)) and boundary condition
u(0) = u(T ) = 0 holds.

Now we give the definition of weak solution for the problem (Dλ,µ) as follows.
Definition 2.6. A function u ∈ Eα is said to be a weak solution of the problem
(Dλ,µ), if for every v ∈ Eα,

T∫

0

[(c0Dα
t u(t))(c0Dα

t v(t)) + a(t)u(t)v(t)] dt+ µ

n∑

j=1
Ij(u(tj))v(tj)

= λ

T∫

0

f(t, u(t)) v(t)dt+
T∫

0

h(u(t))v(t)dt.

Lemma 2.7 ([8, Lemma 2.1]). The function u ∈ Eα is a weak solution of (Dλ,µ) if
and only if u is a classical solution of (Dλ,µ).

Our main tool is Theorem 2.8 which has been obtained by Ricceri
([46, Theorem 2]). It is as follows:
If X is a real Banach space, denoted by WX the class of all functionals Φ : X → R
possessing the following property: If {un} is a sequence in X converging weakly to
u ∈ X and lim infn→∞ Φ(un) ≤ Φ(u), then {un} has a subsequence converging strongly
to u.

For example, if X is uniformly convex and g : [0,+∞) → R is a continuous and
strictly increasing function, then, by a classical result, the functional u → g(‖u‖)
belongs to the class WX .
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Theorem 2.8. Let X be a separable and reflexive real Banach space; let Φ : X → R
be a coercive, sequentially weakly lower semicontinuous C1 functional, belonging to
WX , bounded on each bounded subset of X and whose derivative admits a continuous
inverse on X∗; J : X → R a C1 functional with compact derivative. Assume that Φ
has a strict local minimum u0 with Φ(u0) = J(u0) = 0. Finally, setting

ρ = max
{

0, lim sup
‖u‖→+∞

J(u)
Φ(u) , lim sup

u→u0

J(u)
Φ(u)

}
,

σ = sup
u∈Φ−1(]0,+∞[)

J(u)
Φ(u) ,

assume that ρ < σ. Then for each compact interval [c, d] ⊂ ( 1
σ ,

1
ρ ) (with the conven-

tions 1
0 = +∞, 1

+∞ = 0), there exists R > 0 with the following property: for every
λ ∈ [c, d] and every C1 functional Ψ : X → R with compact derivative, there exists
γ > 0 such that, for each µ ∈ [0, γ],

Φ′(u) = λJ ′(u) + µΨ′(u)

has at least three solutions in X whose norms are less than R.

We refer the reader to the papers [9, 24, 50] in which Theorem 2.8 was success-
fully employed to ensure the existence of at least three solutions for boundary value
problems.

Corresponding to the functions f , h and Ij , j = 1 . . . , n, we introduce the functions
F : [0, T ]×R −→ R, H : R −→ R and Jj : [0, T ]×R −→ R, j = 1, . . . , n , respectively,
as follows:

F (t, ξ) :=
ξ∫

0

f(t, x)dx for all ξ ∈ R,

H(ξ) :=
ξ∫

0

h(x)dx for all ξ ∈ R

and

Jj(ξ) :=
ξ∫

0

Ij(x)dx for all ξ ∈ R, j = 1, . . . n.

Now for every u ∈ Eα, we define

Φ(u) := 1
2‖u‖

2
a,α −

T∫

0

H(u(t))dt, (2.4)
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J(u) =
T∫

0

F (t, u(t))dt (2.5)

and

Ψ(u) = −
n∑

j=1
Jj(u(tj)). (2.6)

Standard arguments show that Φ−µΨ−λJ is a Gâteaux differentiable functional
whit Gâteaux derivative at the point u ∈ Eα given by

(Φ′ − µΨ′ − λJ ′)(u)(v) =
T∫

0

((c0Dα
t u(t))(c0Dα

t v(t)) + a(t)u(t)v(t)) dt

+ µ

n∑

j=1
Ij(u(tj))v(tj)−

T∫

0

h(u(t))v(t)dt

− λ
T∫

0

f(t, u(t))v(t)dt

for all v ∈ X (see [8] for more details). Hence, a critical point of the functional
Φ − µΨ − λJ , gives us a weak solution of (Dλ,µ), and in view of Lemma 2.7 every
weak solution of the problem (Dλ,µ) is a classical one.

We suppose that the Lipschitz constant L > 0 of the function h satisfies LTk2 < 1.
We need the following proposition in the proof of our main result.

Proposition 2.9. Let S : Eα −→ (Eα)∗ be the operator defined by

S(u)(v) =
T∫

0

[(c0Dα
t u(t))(c0Dα

t v(t)) + a(t)u(t)v(t)] dt−
T∫

0

h(u(t))v(t)dt

for every u, v ∈ Eα. Then, S admits a continuous inverse on (Eα)∗.

Proof. Recalling (2.2) we have

S(u)(u) =
T∫

0

(
|c0Dα

t u(t)|2 + a(t)|u(t)|2
)

dt−
T∫

0

h(u(t))u(t)dt

≥ ‖u‖2a,α − L
T∫

0

|u(t)|2dt ≥
(
1− LTk2) ‖u‖2a,α.
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Since LTk2 < 1, this follows that S is coercive. Owing to our assumptions on the
data, one has

〈S(u)− S(v), u− v〉 =
T∫

0

(
|c0Dα

t (u(t)− v(t))|2 + a(t)|u(t)− v(t)|2
)

dt

−
T∫

0

h(u(t)− v(t))(u(t)− v(t))dt ≥ (1− LTk2)‖u− v‖2a,α > 0

for every u, v ∈ Eα, which means that S is strictly monotone. Moreover, since Eα
is reflexive, for un → u strongly in Eα as n → +∞, one has S(un) → S(u) weakly
in (Eα)∗ as n→ +∞. Hence, S is demicontinuous, so by [53, Theorem 26.A(d)], the
inverse operator S−1 of S exists and it is continuous. Indeed, let en be a sequence
of (Eα)∗ such that en → e strongly in (Eα)∗ as n → +∞. Let un and u in Eα be
such that S−1(en) = un and S−1(e) = u. Taking in to account that S is coercive,
one has that the sequence un is bounded in the reflexive space Eα. For a suitable
subsequence, we have un → û weakly in Eα as n→ +∞, which concludes

〈S(un)− S(u), un − û〉 = 〈en − e, un − û〉 = 0.

Note that if un → û weakly in Eα as n→ +∞ and S(un)→ S(û) strongly in (Eα)∗ as
n→ +∞, one has un → û strongly in Eα as n→ +∞, and since S is continuous, we
have un → û weakly in Eα as n→ +∞ and S(un)→ S(û) = S(u) strongly in (Eα)∗
as n→ +∞. Hence, taking into account that S is an injection, we have u = û.

3. MAIN RESULTS

Put

λ1 = inf
{‖u‖2a,α − 2

T∫
0
H(u(t))dt

2
T∫
0
F (t, u(t))dt

: u ∈ Eα,
T∫

0

F (t, u(t))dt > 0
}

and

λ2 =
(

max
{

0, lim sup
|u|→0

2
T∫
0
F (t, u(t))dt

‖u‖2a,α − 2
T∫
0
H(u(t))dt

, lim sup
‖u‖a,α→+∞

2
T∫
0
F (t, u(t))dt

‖u‖2a,α−2
T∫
0
H(u(t))dt

})−1

.
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We formulate our main result as follows.
Theorem 3.1. Suppose the following conditions hold:
(A1) there exists a constant ε > 0 such that

max
{

lim sup
u→0

maxt∈[0,T ] F (t, u)
|u|2 , lim sup

|u|→+∞

maxt∈[0,T ] F (t, u)
|u|2

}
< ε;

(A2) there exists a function w ∈ Eα such that ‖w‖2a,α − 2
T∫
0
H(w(t))dt 6= 0 and

Tk2ε <

(1− LTk2)
T∫
0
F (t, w(t))dt

‖w‖2a,α − 2
T∫
0
H(w(t))dt

.

Then, for each compact interval [c, d] ⊂ (λ1, λ2), there exists R > 0 with the follow-
ing property: for every λ ∈ [c, d] there exists γ > 0 such that, for each µ ∈ [0, γ],
the problem (Dλ,µ) has at least three classical solutions whose norms in Eα are less
than R.
Proof. Take X = Eα. Clearly, X is a separable and uniformly convex Banach space.
Let the functionals Φ, J and Ψ be as given in (2.4), (2.5) and (2.6), respectively.
The functional Φ is a C1 functional, and due to Proposition 2.9 its derivative admits
a continuous inverse onX∗. Moreover, by the sequentially weakly lower semicontinuity
of ‖u‖a,α, Φ is sequentially weakly lower semicontinuous in X. On the other hand,
since

Φ(u) ≥ 1− LTk2

2 ‖u‖2a,α (3.1)

for every u ∈ X, Φ is coercive. Moreover, Φ is bounded on each bounded subset of X.
Indeed, let M be a bounded subset of X. That is, there exists a constant c > 0 such
that ‖u‖a,α ≤ c for each u ∈M . Then, we have

|Φ(u)| ≤ 1 + LTk2

2 c2.

Furthermore, Φ ∈ WX . Indeed, let sequence {un} ⊂ X, un ⇀ u ∈ X and
lim infn→∞ Φ(un) ≤ Φ(u). Since h is continuous, one has

lim inf
n→∞

‖un‖2a,α
2 ≤ ‖u‖

2
a,α

2 .

Thus, {un} has a subsequence converging strongly to u. Therefore, Φ ∈ WX . The
functionals J and Ψ are two C1 functionals with compact derivatives. Moreover,
Φ has a strict local minimum 0 with Φ(0) = J(0) = 0.
In view of (A1), there exist τ1, τ2 with 0 < τ1 < τ2 such that

F (t, u) ≤ ε|u|2, (3.2)
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for every t ∈ [0, T ] and every u with |u| ∈ [0, τ1) ∪ (τ2,+∞). Since f is
L1-Carathéodory, F (t, u) is bounded on t ∈ [0, T ], u ∈ R with |u| ∈ [τ1, τ2]; we
can choose η > 0 and ν > 2 such that

F (t, u) ≤ ε|u|2 + η|u|ν ,
for all (t, u) ∈ [0, T ]× R. So, by (2.2), we have

J(u) ≤ Tk2ε‖u‖2a,α + Tkνη‖u‖νa,α, (3.3)

for all u ∈ X, with k given in (2.3). Hence, from (3.1) and (3.3) we have

lim sup
|u|→0

J(u)
Φ(u) ≤

2Tk2ε

1− LTk2 . (3.4)

Moreover, by using (3.2), for each u ∈ X \ {0}, we obtain

J(u)
Φ(u) =

∫
|u|≤τ2

F (t, u(t))dt

Φ(u) +

∫
|u|>τ2

F (t, u(t))dt

Φ(u)

≤
T supt∈[0,T ],|u|∈[0,τ2] F (t, u)

Φ(u) +
Tk2ε‖u‖2a,α

Φ(u)

≤
2T supt∈[0,T ],|u|∈[0,τ2] F (t, u)

(1− LTk2)‖u‖2a,α
+ 2Tk2ε

1− LTk2 .

So, we get

lim sup
‖u‖a,α→∞

J(u)
Φ(u) ≤

2Tk2ε

1− LTk2 . (3.5)

In view of (3.4) and (3.5), we have

ρ = max
{

0, lim sup
‖u‖a,α→+∞

J(u)
Φ(u) , lim sup

u→0

J(u)
Φ(u)

}
≤ 2Tk2ε

1− LTk2 . (3.6)

Assumption (A2) in conjunction with (3.6) yields

σ = sup
u∈Φ−1(0,+∞)

J(u)
Φ(u) = sup

X\{0}

J(u)
Φ(u)

≥

T∫
0
F (t, w(t))dt

Φ(w(t)) =
2
T∫
0
F (t, w(t))dt

‖w‖2a,α − 2
T∫
0
H(w(t))dt

>
2Tk2ε

1− LTk2 ≥ ρ.

Thus, all the hypotheses of Theorem 2.8 are satisfied. Clearly, λ1 = 1
σ and λ2 = 1

ρ .
Then, for each compact interval [c, d] ⊂ (λ1, λ2), there exists R > 0 such that
for every λ ∈ [c, d] there exists γ > 0 such that, for each µ ∈ [0, γ], the
problem (Dλ,µ) has at least three classical solutions whose norms in Eα are less
than R.
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The another announced application of Theorem 1.1 reads as follows:

Theorem 3.2. Let

max
{

lim sup
u→0

maxt∈[0,T ] F (t, u)
|u|2 , lim sup

|u|→+∞

maxt∈[0,T ] F (t, u)
|u|2

}
≤ 0 (3.7)

and

sup
u∈Eα

T∫
0
F (t, u(t))dt

‖u‖2a,α − 2
T∫
0
H(u(t))dt

> 0. (3.8)

Then for each compact interval [c, d] ⊂ (λ1,+∞) there exists R > 0 with the follow-
ing property: for every λ ∈ [c, d] there exists γ > 0 such that, for each µ ∈ [0, γ],
the problem (Dλ,µ) has at least three classical solutions whose norms in Eα are less
than R.

Proof. In view of (3.7), there exist an arbitrary ε > 0 and τ1, τ2 with 0 < τ1 < τ2
such that

F (t, u) ≤ ε|u|2,

for every t ∈ [0, T ] and every u with |u| ∈ [0, τ1) ∪ (τ2,+∞). Since f is
L1-Carathéodory, F (t, u) is bounded on t ∈ [0, T ], u ∈ R with |u| ∈ [τ1, τ2]; we
can choose η > 0 and ν > 2 such that

F (t, u) ≤ ε|u|2 + η|u|ν ,

for all (t, u) ∈ [0, T ] × R. So, by the same process in proof of Theorem 3.1 we have
relations (3.4) and (3.5). Since ε is arbitrary, (3.4) and (3.5) gives

max
{

lim sup
‖u‖a,α→+∞

J(u)
Φ(u) , lim sup

u→0

J(u)
Φ(u)

}
≤ 0.

Then, with the notation of Theorem 1.1, we have ρ = 0. By (3.8), we also have σ > 0.
Thus, all the hypotheses of Theorem 1.1 are satisfied. Clearly, λ1 = 1

σ .

Remark 3.3. In Assumption (A2) if we choose

w(t) = w?(t) =





δ
mT t, if t ∈ [0,mT ),

δ, if t ∈ [mT, (1−m)T ],

δ
mT (T − t), if t ∈ ((1−m)T, T ],

(3.9)
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where 0 < m < 1
2 and δ > 0. Clearly w?(0) = w?(T ) = 0 and w? ∈ L2[0, T ]. A direct

calculation shows that

|c0Dα
t w

?(t)|

= 1
Γ(1− α)





δ

mT

t1−α

1−α , if t ∈ [0,mT ),

δ

mT

(mT )1−α

1−α , if t ∈ [mT, (1−m)T ],

δ

mT

1
1−α

(
(mT )1−α − (t− (1−m)T )1−α

)
, if t ∈ ((1−m)T, T ],

so that

T∫

0

|c0Dα
t w

?(t)|2dt = (mT )1−2α

Γ2(1− α)
2(m−1 − 1)α2 + (9− 7m−1)α+ 6m−1 − 8

(1− α)2(2− α)(3− 2α) δ2.

Thus, w? ∈ Eα, and

Φ(w?) = 1
2‖w

?‖2a,α −
T∫

0

H(w?(t))dt

= 1
2

(
A(α,m)δ2 +

T∫

0

a(t)|w?(t)|2dt
)
−

T∫

0

H(w?(t))dt,

where

A(α,m) := (mT )1−2α

Γ2(1− α)
2(m−1 − 1)α2 + (9− 7m−1)α+ 6m−1 − 8

(1− α)2(2− α)(3− 2α) .

Then, Assumption (A2) becomes to the following form:

(A′2) there exists a positive constant δ such that

A(α,m)δ2 +
T∫

0

a(t)|w?(t)|2dt 6=
T∫

0

H(w?(t))dt

and

Tk2ε <

T∫
0
F (t, w?(t))dt

A(α,m)δ2 +
T∫
0
a(t)|w?(t)|2dt− 2

T∫
0
H(w?(t))dt

.
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Now, we point out some results in which the function f has separated variables.
To be precise, consider the following problem

tD
α
T (c0Dα

t u(t)) + a(t)u(t) = λθ(t)f(u(t)) + h(u(t)), t 6= tj , a.e. t ∈ [0, T ],
∆
(
tD

α−1
T (c0Dα

t u)
)

(tj) = µIj(u(tj)), j = 1, . . . n,
u(0) = u(T ) = 0,

(Dθ
λ,µ)

where θ : [0, T ]→ R is a non-zero function such that θ ∈ L1([0, T ]) and f : R→ R is
a continuous function.

Set f(t, x) = θ(t)f(x) for every (t, x) ∈ [0, T ] × R and put F (ξ) =
∫ ξ

0 f(x)dx for
every ξ ∈ R. The following existence results are consequences of Theorem 3.1.
Theorem 3.4. Assume that
(A′1) there exists a constant ε > 0 such that

T sup
t∈[0,T ]

θ(t).max
{

lim sup
u→0

F (u)
|u|2 , lim sup

|u|→∞

F (u)
|u|2

}
< ε,

(A′′2) there exists a positive constant δ such that

Tk2ε <

(
1− LTk2) T∫

0
θ(t)F (w?(t))dt

A(α,m)δ2 +
T∫
0
a(t)|w?(t)|2dt− 2

T∫
0
H(w?(t))dt

,

where w? is given by (3.9).
Then, for each compact interval [c, d] ⊂ (λ3, λ4) where λ3 and λ4 are the same as
λ1 and λ2, but

∫ T
0 F (t, u(t))dt replaced by

∫ T
0 θ(t)F (u(t))dt, respectively, there exists

R > 0 with the following property: for every λ ∈ [c, d] there exists γ > 0 such that, for
each µ ∈ [0, γ], the problem (Dθ

λ,µ) has at least three classical solutions whose norms
in Eα are less than R.
Remark 3.5. Theorem 1.1 immediately follows from Theorem 3.4.
Theorem 3.6. Assume that there exists a positive constant δ such that

A(α,m)δ2 +
T∫

0

a(t)|w?(t)|2dt−
T∫

0

H(w?(t))dt > 0 and
T∫

0

θ(t)F (w?(t))dt > 0 (3.10)

where w? is given by (3.9). Moreover, suppose that

lim sup
u→0

f(u)
|u| = lim sup

|u|→∞

f(u)
|u| = 0. (3.11)

Then, for each compact interval [c, d] ⊂ (λ3,∞), there exists R > 0 with the follow-
ing property: for every λ ∈ [c, d] there exists γ > 0 such that, for each µ ∈ [0, γ],
the problem (Dθ

λ,µ) has at least three classical solutions whose norms in Eα are less
than R.
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Proof. We easily observe that from (3.11) the assumption (A′1) is satisfied for every
ε > 0. Moreover, using (3.10), by choosing ε > 0 small enough one can drive the
assumption (A′′2). Hence, the conclusion follows from Theorem 3.4.

Now, we exhibit an example in which the hypotheses of Theorem 3.6 are satisfied.

Example 3.7. Let α = 0.8, T = 1, n = 2, t1 = 1
3 and t2 = 2

3 . Let a(t) = 2 + cos t,
θ(t) = 2+t2

1+t2 for all t ∈ [0, 1]. Moreover, let

f(x) =
{
x sin x, if x < 0,
sin2 x, if x ≥ 0

and

h(x) = 1
2 sin x for all x ∈ R.

Accordingly k = 1.1089 and L = 1
2 . Thus we have 1 > LTk2 = 0.6148. Let I1(x) = ex

and I2(x) = e−x for all x ∈ R. Now by choosing m = 1
3 and δ = 1 we have

w?(t) =





3t, if t ∈ [0, 1
3 ),

1, if t ∈ [ 1
3 ,

2
3 ],

3(1− t), if t ∈ ( 2
3 , 1].

Thus w?(t) ≥ 0 for all t ∈ [0, 1], A(α,m) = A(0.8, 1
3 ) = 8110 5√27

21Γ2(0.2) > 0 and
∫ 1

0 H(w?(t))dt = −0.05. So,

A(α,m) +
1∫

0

a(t)|w?(t)|2dt−
1∫

0

H(w?(t))dt > 0.

Also we have

1∫

0

θ(t)F (w?(t))dt =
1∫

0

2 + t2

1 + t2
F (w?(t))dt ≥

1∫

0

F (w?(t))dt

=
1∫

0

w?(t)∫

0

sin2 xdxdt = 1
2

1∫

0

(
w?(t)− 1

2 sin(2w?(t)
)

dt > 0

and

lim
u→0

f(u)
|u| = lim

u→+∞
f(u)
|u| = 0.
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Hence, by applying Theorem 3.6, for each compact interval [c, d] ⊂ (0,∞), there exists
R > 0 with the following property: for every λ ∈ [c, d] there exists γ > 0 such that,
for each µ ∈ [0, γ], the problem

tD
0.8
1
(
c
0D

0.8
t u(t)

)
+ (2 + sin t)u(t) = λ

2 + t2

1 + t2
f(u(t)) + 1

2 sin(u(t)), t 6= 1
3 , t 6=

2
3

a.e. t ∈ [0, 1],

∆
(
tD
−0.2
1

(
c
0D

0.8
t u

)) (1
3

)
= µeu( 1

3 ), ∆
(
tD
−0.2
1

(
c
0D

0.8
t u

)) (2
3

)
= µe−u( 2

3 ),

u(0) = u(1) = 0

has at least three classical solutions whose norms in E0.8 are less than R.
Finally, by choosing Ij(x) = 0 for every x ∈ R, j = 1, . . . , n, a(t) = 1 for all

t ∈ [0, T ] and h(x) = 0 for all x ∈ R we have the following existence result as
a consequence of Theorem 3.4:
Theorem 3.8. Assume that (A′1) holds and
(A′′′2 ) there exists a positive constant δ such that A(α,m) +

(
1− 4m

3
)
T 6= 0, and

Tk2ε <

T∫
0
θ(t)F (w?(t))dt

[
A(m,α) +

(
1− 4m

3
)
T
]
δ2 ,

where w? is given by (3.9).
Then, for each compact interval [c, d] ⊂ (λ5, λ6), where

λ5 = inf
{

‖u‖2α
2
T∫
0
θ(t)F (u(t))dt

: u ∈ Eα,
T∫

0

θ(t)F (u(t))dt > 0
}

and

λ6 =
(

max
{

0, lim sup
‖u‖α→∞

2
T∫
0
θ(t)F (u(t))dt

‖u‖2α
, lim sup
|u|→0

2
T∫
0
θ(t)F (u(t))dt

‖u‖2α

})−1

,

there exists R > 0 with the following property: for every λ ∈ [c, d] ⊂ (λ5, λ6) there
exists γ > 0 such that, for each µ ∈ [0, γ], the problem

tD
α
T (c0Dα

t u(t)) + u(t) = λθ(t)f(u(t)), a.e. t ∈ [0, T ],
u(0) = u(T ) = 0

has at least three classical solutions whose norms in Eα are less than R.
Remark 3.9. It is worth to mention that in the present paper, unlike the papers [8,47]
in which the existence of multiple solutions for impulsive fractional boundary-value
problems under continuity condition and a growth condition on impulses have been
discussed, the only condition on the impulses is the continuity condition.
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