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Theory decision under uncertainty applies different methods to predict future 
events, physical measurements, which are already unknown. The paper shows one of 
the decision-making methods in conditions of severe uncertainty in application to a 
problem. Some aspects of the robustness and opportuneness functions of Info-Gap 
Theory are presented and used to evaluate the example of efficient fuel allocation.  
A general outline of decision analysis is presented, including its orientation and 
models. 
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1. Introduction 

There are different definitions of uncertainty but the most common is that it is 
a situation where the current state of knowledge is that the order or nature of things 
is unknown, the consequences, extent, or magnitude of circumstances, conditions, 
or events are unpredictable, and credible probabilities to possible outcomes cannot 
be assigned [6]. In decision-making theory there are many problems with limited 
information or conjecture. Along with the development of science and technology, 
new methods and tools dealing with uncertainty appear. Among these methods and 
theories: fuzzy mathematics by L.A. Zadeh (1960s) [11], interval arithmetic by 
R.E. Moore (1960s) [8], grey systems theory by J. Deng (1980s) [7], rough set 
theory by Z. Pawlak (1980s) [9], uncertainty mathematics by H. Bandemer (2005) 
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[2] can be mentioned. Each of these methods has its own interpretation and 
modeling of uncertainty and they are used to different problems. It is difficult to 
compare these methods, because there is no standardized method of verification. 
Hence some scientists introduce and suggest still new approaches and methods. 
One of them is Info-Gap Theory developed by Y. Ben-Haim (2001) [3, 4]. Info-
Gap Theory is used to non-probabilistic problems where there is no information on 
probabilities and there are not any probability distributions. It concerns seeking for 
and determining optimal or possibly good problem solutions taking into account 
robustness and opportuneness models, which are in detail described in next section. 
The problem of efficient fuel allocation solved in this paper is a good example to 
show an assessment of this method applicability. 

2. Description of Info-Gap Theory  

Info-Gap Decision Theory is the quantitative assessments assist the decision 
maker to evaluate options and strategies in light of the analysis of uncertainties. 
The method is described in many papers, books and used in a range of applications 
[12]. The name of the method comes from the word info-gap. The definition of 
info-gap says that it is the disparity between what is known, and what needs to be 
known in order to make a comprehensive and reliable decision. The method 
consists of a main info-gap model of uncertainty. It is an unbounded family of 
nested sets that share a common structure. [3]. The structure of the sets in an info-
gap model depends on information about the uncertainty. In general terms, the 
structure of an info-gap model of uncertainty is chosen to define the smallest or 
strictest family of sets whose elements are consistent with the prior information. 
This model measures how distant other values of the parameter are from the 
estimate. It can be represented as follows [4]:  

0},|~:|{)~,( ≥≤−= ααα uuuuU     (1) 

where u~denotes the best estimate of an uncertain function u, while the fractional 
error from this estimate, α , is unknown. Info-Gap Theory assumes that u~

represents a poor guess at the true values of the parameters. At any level of 
uncertainty α , the set )~,( uU α  contains all functions u whose fractional deviation 
from u~  is no greater than α  [1]. The consequences of uncertainty can be both 
catastrophic failure or windfall success. Hence Ben-Haim introduced to his method 
two immunity functions: robustness and opportuneness functions. The first one 
assesses the immunity to failure, while the second one assesses the immunity of 
windfall. These functions express the basic knowledge and expectations, which a 
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decision maker brings to the decision problem. Using robustness and 
opportuneness functions the preferences on the options can be formulated.  

The robustness function can be expressed as the maximum value of the 
uncertainty parameter α  of an info-gap model [1, 3]: 

min:max{)( αα =q
)

requirements are always satisfied} 

)}~,(:{max)( 0 uUuq ααα α ∈∀= ≥
)

              (2) 

where q denotes a vector of decision variables such as choice of a model or its 
parameters. The robustness function involves maximization of the uncertainty, or 
the range of variation in a variable, parameter or model, at which decision q would 
satisfy the performance at a tolerable level [3]. The opportuneness function can be 
expressed as the lowest horizon of uncertainty that is necessary for better than 
anticipated outcomes to be possible:  

:min{)( αβ =q
)

sweeping success is possible} 

)}~,(:{min)( 0 uUuq ααβ α ∈∀= ≥

)
     (3) 

where q denotes a vector of decision variables such as choice of a model or its 

parameters. A small value of )(qβ
)

 reflects the opportune situation that great 
reward is possible even in the presence of little ambient uncertainty. If we use 
robustness and opportuneness function simultaneously and add decision maker’s 
expectations we can get possibly good solution, what is presented in next section in 
the numerical example. 

3. Numerical example 

The problem concerns the efficient fuel allocation for a rally vehicle. The car 
takes part in a multiday race and during one day it should be able to travel at least a 
distance dc. Otherwise, the driver will be disqualified from the race. If the driver 
travels a longer distance than dc, the total distance to the end will be shorter and it 
will increase his chance to win. To ensure passing the required minimum route, the 
driver must take the appropriate amount of fuel q. The distance, which a vehicle 
can travel with quantity q of fuel takes form [3]: 

21
),(

cq

q
cqd

+
=                                             (4) 

where c is a coefficient of road difficulty. 
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Figure 1. A qualitative distance depending on a fuel 

 
It seems that the greater amount of fuel q increases the chance of overcoming 

the minimum distance dc. However, if the car takes less fuel, it is lighter (smaller 
total weight), can easier overcome hills and has smaller fuel consumption. For this 
reason, too much fuel q does not guarantee to pass the minimum route dc. The 
distance is not only dependent on a fuel but on a coefficient of road difficulty as 
well. The value of this coefficient is unknown and depends on many factors as 
weather, terrain, car’s weight, etc. The only knowledge is that the more difficult 
road, the greater value of coefficient c. 
 

 
Figure 2. The distance d(q, c) with different values of coefficient c 
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Fig. 2 shows that a vehicle can sometimes travel 0.8 units of distance or 1.4 
units taking 2 units of fuel. It depends on the coefficient c. The left and right border 
of interval value of c is uncertain, so it is difficult to say in which interval [cmin, 
cmax] the value of c is contained. The lack of knowledge about value of c is an info-
gap in this problem. The question is how to estimate this coefficient to travel the 
appropriate distance.  

It is known that the driver took part in previous races twice and he defeated 
considered road once with good weather conditions having q = 2 and traveled 
distance d = 1.6667 and next time with bad weather conditions he took q = 5 and 
traveled distance d = 0.6896. On the basis of this information, c can be calculated 
by the following formula: 

2dq

dq
c

−=                                                    (5) 

Travel 1: q1 = 2 AND  d1 = 1.6667  THEN c1 = 0.05 
Travel 2: q2 = 5 AND  d2  = 0.6896  THEN c2 = 0.25 

Information c1 and c2 are the only information on the degree of coefficient c which 
we have. On this basis the estimated degree of coefficient c is calculated. 

15.0
2

~ 21 =
+

=
cc

c                                          (6) 

The estimated value of c~  is highly uncertain and based only on two experiment 
trips. The info-gap model of this problem is developed. 

0},~|~:|{)~,( ≥≤−= ααα cccccU                    (7) 

where α - is a coefficient of uncertainty of the c value. Since c~  = 0.15, a more 
concrete form of info-gap model of uncertainty can be presented: 

                                        0},15.0|15.0:|{)~,( ≥≤−= ααα cccU                            (8) 
Interpretation of  the model:  
Value |~| cc−  is an absolute error of the estimate of actual c coefficient value on 
the route during the journey. 
Record ccc ~|~| α≤− means that it is easier to make a big estimated error c~∆  when 
the value of c~  is greater. The minimal distance which has to be traveled is dc = 1.0. 
The robustness function α)  takes form: 

 }),(min:max{),( )~,( cicUcc dcqddc ≥= ∈ ααα)                  (9) 

We want to determine the amount of fuel qi, which enables car to travel at 
least a critical minimum distance )( cc ddd ≥ . Robustness α)  determines the 
maximum allowable error of estimate c~ . If the real value of the uncertainty α  
does not exceed it, the amount of fuel qi gives the possibility to travel at least dc.    
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Robustness ccqi
~:)( >α)  means that so difficult road and conditions during race 

were not suspected. 
On the basis of (7) we get: 

ccc ~~ α≤−  
ccc ~~ α+≤  
cc ~)1( α+≤  

IF cc ~)1( α+≤  THEN 2~)1(1 qc

q
d

α++
≥                   (10) 

If the real uncertainty of α  equals the uncertainty limit α)  defined as the 
robustness, then the distance d will be equal dc. 

IF )( αα )=   THEN 2~)1(1 qc

q
dd c α++

==                 (11) 

The robustness α)  where the vehicle travels at least distance dc takes form: 

1~ 2
−−=

qdc

dq

c

cα)                                                (12) 

Let consider five options of taken fuel (only full fuel tanks can be taken): 
q1 = 1 and  q2 = 2 and q3 = 3 and q4 = 4 and q5 = 5 [units]. 
For  q1 = 1 (dc = 1, c~ = 0.15): 

11~ 2
1

1
1 −=−−=

qdc

dq

c

cα)  

Negative value of robustness 0<α)  means that there is no robustness according 
Info-Gap Theory. The lowest value of fuel q where the robustness is nonnegative 
equals q = 1.5 units. 
The maximum robustness has a decision where q = 2. To understand the meaning 
of  α , we can assume that if αα )=  then cc ˆ= : 

ccc ~ˆˆ)ˆ(ˆ αα +=  

cccc ~ˆ~ˆ)ˆ(ˆ αα =−=∆                                             (13) 
 

Table 1. The values of error )ˆ(ˆ αc∆  of c~  for each robustnessα)  

i 1 2 3 4 5 

qi 1.5 2 3 4 5 

iα)  0 0.667 0.481 0.250 0.067 

)( ic α))∆  0 0.100 0.072 0.038 0.010 

 



234 
 

 
Figure 3. The robustness iα)  for i = 1-5 

 

 
Figure 4. The relationship between c

)
and fuel for robustness function 

 
Fig. 4. shows that if q = 2, the error of estimate value c~ will be 0.100 what 

represents 66.7% of  15.0~ =c  and the distance will be cdd ≥ . Other decisions 
about taking a different amount of fuel do not have such a great robustness, so they 
are more risky.  

As it was said in section two, uncertain variations may be either adverse or 
favorable. The uncertainty in this problem will be adverse if the real value of c will 



235 
 

be higher than .~c Otherwise, it will be a windfall gain, because a vehicle will travel 
further than expected and it is called opportuneness situation. 

cc ~≤  
cc ~)1(~ ≤−α  

The driver will be satisfied if he manages to overcome the distance dw = 1.4, so the 
sweeping success will be if he travels further than dw. 

wdd ≥  

The opportuneness β̂ is the least level of uncertainty α  which must be tolerated in 
order to travel a distance equals dw: 

2)ˆ1(~1 qc

q
dd w β−+

==                                         (14) 

The opportunenessβ̂  takes form: 

2~1)(ˆ
qdc

dq
q

w

w−−=β                                               (15) 

IF )ˆ( βα ≥  THEN  )( wdd ≥  

Let consider the opportuneness β̂ for each of five options of fuel q and calculate 

the error of estimation cccc ~ˆˆ~ˆ~ ∆=−=β . 
 

Table 2. The values of error c~∆̂  for each opportuneness β̂  

i 1 2 3 4 5 

qi 1.4 2 3 4 5 

iβ̂  1 0.400 0.154 0.226 0.314 

c~∆̂  0 0.100 0.072 0.038 0.010 

 
As shown the greatest opportunity to travel the distance cdd ≥  gives a 

decision about taking 3 units of fuel because it has the lowest value of 

opportuneness β̂ . In this case, if the real value of c is 15.4% lower than 15.0~ =c , 

travelling distance dw = 1.4 will be guaranteed. These all results are presented in 
Fig. 5 and Fig. 6. 
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Figure 5. The opportuneness iβ̂ for i = 1−5 

 

 
Figure 6. The relationship between c

)

 and fuel for opportuneness function 
 

Fig.6. shows that the best chance of passing a long distance gives decision q = 3 
units of fuel. However, taking into account the calculation of robustnessα̂ , it 

shows that better decision is q = 2 units of fuel. The relationship )(ˆ qα  and )(ˆ qβ  is 
presented in Fig. 7. 
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Figure 7. The robustness )(ˆ qα  and opportuneness )(ˆ qβ curves 

 
Fig. 7 shows that two decisions q = 2 and q = 3 compete with each other. Decision 

q = 2 has a higher robustness2α̂  but also a higher opportuneness2β̂ . The question 
is which decision is better. The answer depends on decision maker’s risk-taking 
propensity [5]. To determine the optimal decision, a criterion including risk-taking 
propensity should be developed. The proposed criterion has the following equation:  

)( iqK = robustness (1 – risk-taking propensity) – opportuneness (risk-taking 
propensity) 

)(ˆ)(ˆ)1()( iii qrqrqK βα −−=                                    (16) 
Assume that risk-taking propensity in this problem is low and it is r = 0.3, where 

:]1;0[∈r  

)(ˆ3.0)(ˆ7.0)( iii qqqK βα −=  
It means that a driver, who is a decision maker, prefers to have guarantee to travel 
the minimum required distance than to travel longer than satisfied distance dw. 
With these assumptions, we can calculate the criterion for decisions q2 = 2 and       
q3 = 3: 

052.0400.03.0667.07.0)2( =⋅−⋅=K  
043.0153.03.0400.07.0)3( =⋅−⋅=K  

As a result we get that with a low risk-taking propensity it is better to take q = 2 
units of fuel. If the risk-taking propensity would be higher, for example r = 0.6, it 
would be better to take q = 3 units of fuel and the results would be as following: 
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027.0400.06.0667.04.0)2( =⋅−⋅=K  
068.0153.06.0400.04.0)3( =⋅−⋅=K  

It shows how important risk-taking propensity of decision maker is. 

4. Conclusions 

Decision-making is a field used in all science areas. People want to understand 
and manage the gap between what they know and what they could know in order to 
make an appropriate decision. Info-Gap Theory is a method for supporting 
problems with severe uncertainty. It solves decision making problems without any 
probability distributions of uncertain variables or membership functions, which 
most of all classical decision making methods require. The paper presents the 
general outline of this method and its models. The numerical example of efficient 
fuel allocation with one uncertain variable is analyzed. The solved problem shows 
how to use robustness and opportuneness functions simultaneously and how 
important is decision maker’s risk-taking propensity to make a final decision. 
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