PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved photovoltaic properties of a back-contact electrode produced by copper deposition on carbon-dots/carbon paper

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ulepszone właściwości fotowoltaiczne dolnej warstwy kontaktowej wytwarzanej metodą depozycji miedzi na skojarzeniu kropki węglowe/papier węglowy
Języki publikacji
EN
Abstrakty
EN
The implementation of carbon dots in electronic devices are among the hot topics in today’s research. The current work describes the fabrication of a new back contact electrode for solar cells with the modification of carbon paper by the uniform deposition of highly crystalline carbon dots (CD). The ~5nm size CD were synthesized by the sonication of polyethylene glycol (PEG-400), which was further deposited on carbon paper. Copper was successfully electrodeposited onto the modified C-dots carbon-paper (C-paper@CD) through a potentiostatic procedure. The SEM and XRD results show that the electrodeposition of copper on CD-modified carbon paper is denser than pristine carbon-paper. A detailed study of CD@C-paper and Cu/Cu2OCD@C-paper was performed using the XRD, SEM, Raman, EDS, Elemental mapping, KPFM (Kelvin Probe Force Microscope), etc. The as-prepared electrode comprising of a C-paper modified with CD was tested in solar cells as a back contact, and it demonstrated superior high photo-voltage, significantly useful for photovoltaic implications.
PL
Implementacja kropek węglowych w zastosowaniach elektronicznych to obecnie jeden z najszybciej rozwijających się kierunków współczesnej nauki. W artykule opisano nową metodę wytwarzania dolnej warstwy kontaktowej (elektrody dolnej) w ogniwach fotowoltaicznych techniką równomiernej depozycji wysoce krystalicznych kropek węglowych (CD). CD wielkości ~5 nm generowano poprzez sonikację glikolu polietylenowego (PEG-400), który deponowano na papierze węglowym. Na tak zmodyfikowanym papierze (C-paper@CD) miedź osadzano metodą potencjostatycznej elektrodepozycji. Wyniki analiz SEM oraz XRD wskazują, że zastosowana technologia sprzyja powstawaniu bardziej zwartych warstw przewodzących w porównaniu z niemodyfikowanym papierem węglowym. Szczegółowe badania CD@C-paper oraz skojarzenia Cu/Cu2O-CD@C-paper przeprowadzono z wykorzystaniem technik XRD, SEM, spektroskopii Ramana, EDS, mapowania elementarnego, KPFM (mikroskopia sił z sondą Kelvina) i innych. Wytworzone elektrody były także testowane w ogniwach słonecznych w roli dolnej warstwy kontaktowej i wykazały wybitne właściwości szczególnie pożądane w zastosowaniach fotowoltaicznych.
Twórcy
autor
  • Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
autor
  • Division of Chemistry, Nuclear Research Center-Negev, Be’er-Sheva, Israel
autor
  • Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
Bibliografia
  • 1. Shenderova O. a., Zhirnov V.V., Brenner D.W. (2002) Carbon Nanostructures. Crit Rev Solid State Mater Sci 27:227-356. doi: 10.1080/10408430208500497.
  • 2. Dai L. (2006) Chapter 1 From conventional technology to carbon nanotechnology : The fourth industrial revolution and the discoveries of C ^ Q , carbon nanotube and nanodiamond.
  • 3. Hu S., Zhao Q., Dong Y., et al (2013) Carbondotloaded alginate gels as recoverable probes: Fabrication and mechanism of fluorescent detection. Langmuir 29:12615-12621. doi: 10.1021/la402647t.
  • 4. Shen L., Chen M., Hu L., et al (2013) Growth and stabilization of silver nanoparticles on carbon dots and sensing application. Langmuir 29:16135-16140. doi: 10.1021/la404270w.
  • 5. Lv L., Fan Y., Chen Q., et al (2014) Threedimensional multichannel aerogel of carbon quantum dots for high-performance supercapacitors. Nanotechnology 25:235401. doi: 10.1088/0957-4484/25/23/235401.
  • 6. Chen Q., Hu Y., Hu C., et al (2014) Graphene Composites for High-Performance. Phys Chem Chem Phys 16:19307–19313. doi: 10.1039/C4CP02761b.
  • 7. Gao S., Chen Y., Fan H., et al (2014) A green onearrow-two-hawks strategy for nitrogen-doped carbon dots as fluorescent ink and oxygen reduction electrocatalysts. J Mater Chem A 2:6320. doi: 10.1039/c3ta15443b.
  • 8. Tan M., Zhang L., Tang R., et al (2013) Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source. Talanta 115:950–956. doi: 10.1016/j. talanta.2013.06.061.
  • 9. Yin B., Deng J., Peng X., et al (2013) Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 138:6551-6557. doi: 10.1039/C3AN01003A.
  • 10. Barati A., Shamsipur M., Arkan E., et al. (2015) Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: Analytical applications and optimization using response surface methodology. Mater Sci Eng C 47:325-332. doi: 10.1016/j.msec.2014.11.035.
  • 11. Prasannan A., Imae T. (2013) One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res 52:15673–15678. doi: 10.1021/ie402421s.
  • 12. Li C.-L., Ou C.-M., Huang C.-C., et al (2014) Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. J Mater Chem B 2:4564-4571. doi: 10.1039/C4TB00216D.
  • 13. Kozák O., Datta K.K.R., Greplová M., et al (2013) Surfactant-derived amphiphilic carbon dots with tunable photoluminescence. J Phys Chem C 117:24991-24996. doi: 10.1021/jp4040166.
  • 14. Mehta V.N., Jha S., Kailasa S.K. (2014) One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater Sci Eng C 38:20-27. doi: 10.1016/j.msec.2014.01.038.
  • 15. Bian J., Huang C., Wang L., et al (2014) Carbon dot loading and TiO₂ nanorod length dependence of photoelectrochemical properties in carbon dot/TiO₂ nanorod array nanocomposites. ACS Appl Mater Interfaces 6:4883-90. doi: 10.1021/am4059183.
  • 16. Bourlinos A.B., Trivizas G., Karakassides M.A., et al (2015) Green and simple route toward boron doped carbon dots with significantly enhanced nonlinear optical properties. Carbon N Y 83:173-179. doi: 10.1016/j.carbon.2014.11.032.
  • 17. Hu S., Tian R., Dong Y., et al (2013) Preparation and optical properties of phthalocyanine-carbon dot blends. RSC Adv 3:21447. doi: 10.1039/c3ra42090f.
  • 18. Dou Q., Fang X., Jiang S., et al (2015) Multifunctional fluorescent carbon dots with antibacterial and gene delivery properties. RSC Adv 5:46817-46822. doi: 10.1039/c5ra07968c.
  • 19. Li H., Kang Z., Liu Y., Lee S.-T. (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230. doi: 10.1039/c2jm34690g.
  • 20. Kim W.-K., Lee S., Hee Lee D., et al (2015) Cu mesh for flexible transparent conductive electrodes. Sci Rep 5:10715. doi: 10.1038/srep10715.
  • 21. Gao X., Aikawa S., Mitoma N., et al (2014) Self-formed copper oxide contact interlayer for high performance oxide thin film transistors. Appl Phys Lett. doi: 10.1063/1.4890312.
  • 22. Olsen L.C., Bohara R.C., Urie M.W. (1979) Explanation for low-efficiency Cu2O Schottkybarrier solar cells. Appl Phys Lett 34:47-49. doi: 10.1063/1.90593.
  • 23. Wang L.C., de Tacconi N.R., Chenthamarakshan CR, et al (2007) Electrodeposited copper oxide films: Effect of bath pH on grain orientation and orientation-dependent interfacial behavior. Thin Solid Films 515:3090–3095. doi: 10.1016/j.tsf.2006.08.041.
  • 24. Tu J., Yuan Y., Jiao H., Jiao S. (2014) RSC Advances electrodeposition onto carbon paper and its. 16380-16384. doi: 10.1039/c4ra00592a.
  • 25. Kumar V.B., Porat Z., Gedanken A. (2016) Facile One-Step Sonochemical Synthesis of Ultrafine and Stable Fluorescent C-dots. Ultrason Sonochem 28:367-375. doi: 10.1016/j.ultsonch.2015.08.005.
  • 26. Bhooshan Kumar V., Gouda L., Porat Z., Gedanken A. (2016) Sonochemical synthesis of CH3NH3PbI3 perovskite ultrafine nanocrystal sensitizers for solar energy applications. Ultrason Sonochem 32:54–59. doi: 10.1016/j.ultsonch.2016.02.012.
  • 27. Jang D.M., Park K., Kim D.H., et al (2015) Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite Colloidal Nanocrystals for Full-Range Band Gap Tuning. Nano Lett 150714104303009. doi: 10.1021/acs.nanolett.5b01430.
  • 28. Kamat P.V. (2013) Evolution of perovskite photovoltaics and decrease in energy payback time. J Phys Chem Lett 4:3733-3734. doi: 10.1021/jz402141s.
  • 29. Lin Q., Armin A., Burn P.L., Meredith P. (2016) Organohalide Perovskites for Solar Energy Conversion. Acc Chem Res 49:545-553. doi: 10.1021/acs.accounts.5b00483.
  • 30. Albero J., Malik A.R., Garcia H. (2016) Influence of the Composition of Hybrid Perovskites on their Performance in Solar Cells. J Mater Chem A 4353-4364. doi: 10.1039/C6TA00334F.
  • 31. Kutes Y., Zhou Y., Bosse J.L., et al (2016) Mapping the Photoresponse of CH3NH3PbI3 Hybrid Perovskite Thin Films at the Nanoscale. Nano Lett 1-28. doi: 10.1021/acs.nanolett.5b04157.
  • 32. Abdelhady A.L., Saidaminov M.I., Murali B., et al (2016) Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals. J Phys Chem Lett 7:295-301. doi: 10.1021/acs.jpclett.5b02681.
  • 33. Gedanken A. (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11:47-55. doi: 10.1016/j.ultsonch.2004.01.037.
  • 34. Jost K., Perez C.R., McDonough J.K., et al. (2011) Carbon coated textiles for flexible energy storage. Energy Environ Sci 4:5060. doi: 10.1039/c1ee02421c.
  • 35. Hu L., La Mantia F., Wu H., et al (2011) Lithiumion textile batteries with large areal mass loading. Adv Energy Mater 1:1012–1017. doi: 10.1002/aenm.201100261.
  • 36. Harifi T., Montazer M. (2015) A review on textile sonoprocessing: A special focus on sonosynthesis of nanomaterials on textile substrates. Ultrason Sonochem 23:1-10. doi: 10.1016/j.ultsonch.2014.08.022.
  • 37. Kumar V.B., Perelshtein I., Lipovsky A., et al. (2015) The sonochemical synthesis of Ga@C-dots particles. RSC Adv 5:25533-25540. doi: 10.1039/C5RA01101A.
  • 38. Li Y., Zhong X., Rider A.E., et al (2014) Fast, energy-efficient synthesis of luminescent carbon quantum dots. Green Chem 16:2566-2570. doi: 10.1039/C3GC42562B.
  • 39. Li Y., Zhao Y., Cheng H., et al (2012) Nitrogendoped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134:15-18. doi: 10.1021/ja206030c.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-096e54e3-fae0-4c82-bbba-13453bc7854b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.