PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional Order Dynamic Positioning Controller

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Improving the performance of Dynamic Positioning System in such applications as station keeping, position mooring and slow speed references tracking requires improving the position and heading control precision. These goals can be achieved through the improvement of the ship control system. Fractional-order calculus is a very useful tool which extends classical, integer-order calculus and is used in contemporary modeling and control applications. Fractional-order PI?D? controller, based on the added flexibility of fractional-order operators, are capable of superior performance compared to their integer-order counterparts. This paper presents the fractional order PI?D? controller designed to maintain the ship position and heading and the results were compared with classical integer order PID controller.
Twórcy
autor
  • Gdańsk University of Technology, Poland
Bibliografia
  • 1. Cao, Y., Lee, T., Garrett, D. & Chappell. 2001. Dynamic Positioning of Drilling Vessels with A Fuzzy Logic Controller. Dynamic Positionig Conference. Houston.
  • 2. Cao, Y., Zhou, Z. & W. Vorus. 2000. Application of a Neural Network Predictor/Controller to Dynamic Positioning of Offshore Structures. Dynamic Positionig Conference. Houston.
  • 3 Domek S., 2013. Rachunek różniczkowy ułamkowego rzędu w regulacji predykcyjnej, Wydawnictwo Uczelniane ZUT. Szczecin.
  • 4 Efe, M. Ö., 2011.Fractional Order Systems in Industrial Automation ‐ A Survey, IEEE Transactions On Industrial Informatics, Vol. 7, No. 4, pp. 582‐591
  • 5 Fossen, T.I. 2002. Marine Control Systems: Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics. Trondheim.
  • 6 Fossen,T.I. & Strand. J.P.1999. Passive nonlinear observer design for ships Using Lyapunov Methods: Experimental Results with a Supply vessel, Automatica, Vol. 35, No.1.
  • 7 Godhavn J.M & Fossen T.I.& Berge S.P.. 1998. Non‐linear and adaptive backstepping designs for tracking control of ships, International Journal of Adaptive Control and Signal Processing, No.12 (8), pp. 649–670
  • 8 Grimble, M. & Y. Zhang, & M.R. Katebi. 1993. H‐based ship autopilot design. Ship Control Symposium. Ottawa, Canada, 678–683.
  • 9 Karimi, M. & M. Zamani, N. Sadati, M. Parniani.2009. An Optimal Fractional Order Controller for an AVR System Using Particle Swarm Optimization Algorithm, Control Engineering Practice, vol. 17, pp. 1380–1387.
  • 10 Krstic, M. & I. Kanellakopulos, & P.V. Kokotovic. 1995. Nonlinear and Adaptive Control Design. John Wiley and Sons Ltd.. New York, NY.
  • 11 Messer, A. & M. Grimble. 1993. Introduction to robust ship track‐keeping control design. Transactions of the Institute of Measurement and Control. Vol.15, No.3, 104–110.
  • 12 Monje, C.A. & B.M. Vinagre & Y.Q. Chen & V. Feliu & P. Lanusse, J. Sabatier. 2004. Proposals for fractional PID tuning, 1st IFAC workshop on Fractional Differentiation and its Applications, Bordeaux, France.
  • 13 Monje, C. A. & B. M. Vinagre & V. Feliu & Y. Q. Chen. 2008. Tuning and auto‐tuning of fractional order controllers for industry applications. Control Eng. Practice, vol. 16, pp. 798–812.
  • 14 Nouillant, C & F. Assadian & X. Moreau & A. Oustaloup. 2002 Feedforward and Crone Feedback Control Strategies for Automobile ABS. Vehicle System Dynamics, vol.38,no.4, pp.293–315
  • 15 Oustaloup, A. & P. Melchior & P. Lanusse & O. Cois & F. Dancla. 2000. The CRONE toolbox for Matlab. in Proc. IEEE Int.Symp. Computer‐Aided Control System Design CACSD , pp. 190–195.
  • 16 Podlubny, I. & L. Dorcak & I. Kostial.1997. On Fractional Derivatives, Fractional‐Order Dynamic Systems and PIλD controllers, 36th Conference on Decision & Control, San Diego, USA.
  • 17 Podlubny, I. 1999. Fractional‐Order Systems and PIλD Controllers, IEEE Transactions on Automatic Control, vol. 44, pp. 208‐214.
  • 18 Vinagre, B.M. & I. Podlubny & L. Dorcak & V. Feliu.2000. On Fractional PID Controllers: A Frequency Domain Approach, IFAC Workshop on Digital Control: Past, Present and Future of PID Control. Terrasa, Spain.
  • 19 Tomera, M. 2010. Nonlinear controller design of a ship autopilot. International Journal of Applied Mathematics and Computer Science. Vol.20, No.2, 271–280.
  • 20 Tepljakov, D. & E. Petlenkov & J. Belikov, 2011. FOMCON: Fractional‐order modeling and control toolbox for MATLAB. In Proc. 18th Int Mixed Design of Integrated Circuits and Systems (MIXDES) Conference, pp. 684–689.
  • 21 Valerio, D. 2005 Toolbox Ninteger for MatLab, v. 2.3. Available:http://web.ist.utl.pt/duarte.valerio/ninteger/ninteger.htm
  • 22 Vinagre, B. M & A. J. Calderon. 2006. On fractional sliding mode control. In Proc. 7th Portuguese Conf. Autom. Control (CONTROLO’06), Lisbon, Portugal.
  • 23 Witkowska A. 2014. Metody alokacji pędników w układach dynamicznego pozycjonowania statku. Krajowa Konferencja Automatyki, KKAʹ2014, Polska.
  • 24 Witkowska, A. 2013. Dynamic positioning system with vectorial backstepping controller. Methods and Models in Automation and Robotics (MMAR), 2013 18th International Conference on. IEEE, 2013.
  • 25 Xu, R. & Q.Wang & Y. Song & R. Zheng & M. Chen. 2011 Study on Ship Dynamic Positioning Systemʹs Thruster Allocation Based on Genetic Algorithm. International Conference on Information Science and Technology.
  • 26 Zhang Dejun, Liu Jiang, Yu Fan, Lin Yi. 2006. Study and Evaluation of Driver‐Vehicle System with Fractional Order PD Controller. IEEE Proc. of the Vehicular Electronics and Safety, pp.434–439.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0967585e-de0d-4618-b25d-aab18f4c2466
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.