PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Machine learning methods for MRI biomarkers analysis of pediatric posterior fossa tumors

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Medical imaging technologies provide an increasing number of opportunities for disease prediction and prognosis. Specifically, imaging biomarkers can quantify the entire tumor phenotypes to enhance the prediction. Machine learning technology can be explored to mine and analyze these biomarkers and to establish predictive models for the clinical applications. Several studies have applied various machine learning methods to imaging biomark-ers based clinical predictions of different diseases. Here we seek to evaluate different machine learning methods in pediatric posterior fossa tumor prediction. We present a machine learning based magnetic resonance imaging biomarkers analysis framework for two kinds of pediatric posterior fossa tumors. In details, three feature extraction methods are used to obtain 300 imaging biomarkers. 10 feature selection methods and 11 classifiers are evaluated by the quantified predictive performance and stability, and importance consistency of features and the influence of the experimental factors are also analyzed. Our results demonstrate that the CFS feature selection method (accuracy: 83.85 5.51%, stability: [0.84, 0.06]) and SVM classifier (accuracy: 85.38 3.47%, RSD: 4.77%) show relatively better performance than others and should be preferred. Among all the biomarkers, 17 texture features seem to be more important. Multifactor analysis results indicate the choice of classifier accounts for the most contribution to the variability in performance (37.25%). The machine learning based framework is efficient for pediatric posterior fossa tumors biomarkers analysis and could provide valuable references and decision support for assisted clinical diagnosis.
Twórcy
autor
  • School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan, China; Industrial Technology Research Institute, Zhengzhou University, Zhengzhou, Henan, China
  • School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan, China; Industrial Technology Research Institute, Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, Henan, China
  • School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan, China; Industrial Technology Research Institute, Zhengzhou University, Zhengzhou, Henan, China
autor
  • Magnetic Resonance Department, the first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
autor
  • School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan, China; Industrial Technology Research Institute, Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, Henan, China
Bibliografia
  • [1] Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Cavalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014;5:4006.
  • [2] Gong J, Liu JY, Sun XW, Zheng B, Nie SD. Computer-aided diagnosis of lung cancer: the effect of training data sets on classification accuracy of lung nodules. Phys Med Biol 2018;63:035036.
  • [3] Suk HI, Lee SW, Shen D. Deep ensemble learning of sparse regression models for brain disease diagnosis. Med Image Anal 2017;37:101–3.
  • [4] Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T et al. CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv 2017: 1711.05225.
  • [5] Orphanidou-Vlachou E, Vlachos N, Davies NP, Arvanitis TN, Grundy RG, Peet AC. Texture analysis of T1- and T2- weighted MR images and use of probabilistic neural network to discriminate posterior fossa tumours in children. NMR Biomed 2014;27:632–9.
  • [6] Lee SJ, Zea R, Kim DH, Lubner MG, Deming DA, Pickhardt PJ. CT texture features of liver parenchyma for predicting development of metastatic disease and overall survival in patients with colorectal cancer. Eur Radiol 2017;28:1–9.
  • [7] Abidin AZ, Jameson J, Molthen R, Wismüller A. Classification of micro-CT images using 3D characterization of bone canal patterns in human osteogenesis imperfecta. In: Armato SG, Petrick NA, editors. Proc SPIE 10134, Medical Imaging 2017: Computer-Aided Diagnosis. Orlando, FL, USA: SPIE; 2017. p. 1013413.
  • [8] Sabin ND, Merchant TE, Li X, Li Y, Klimo Jr P, Boop FA, et al. Quantitative imaging analysis of posterior fossa ependymoma location in children. Childs Nerv Syst 2016;32:1441–7.
  • [9] Gevaert O, Mitchell LA, Achrol AS, Xu J, Echegaray S, Steinberg GK, et al. Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology 2015;276:313.
  • [10] Luts J, Poullet JB, Garciagomez JM, Heerschap A, Robles M, Suykens JA, et al. Effect of feature extraction for brain tumor classification based on short echo time 1H MR spectra. Magn Reson Med 2008;60:288–98.
  • [11] Ganeshan B, Abaleke S, Young RCD, Chatwin CR, Miles KA. Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging 2010;10:137.
  • [12] Holdenrieder S, Nagel D, Heinemann V, Pawel JV, Raith H, Feldmann K, et al. Predictive and prognostic biomarker models in advanced lung cancer. J Clin Oncol 2008;26:431–6.
  • [13] Anderson B, Hardin JM, Alexander DD, Meleth S, Grizzle WE, Manne U. Comparison of the predictive qualities of three prognostic models of colorectal cancer. Front Biosci 2010;2:849–56.
  • [14] Su XW, Simmons Z, Mitchell RM, Kong L, Stephens HE, Connor JR. Biomarker-based predictive models for prognosis in amyotrophic lateral sclerosis. JAMA Neurol 2013;70:1505–11.
  • [15] Nilashi M, Ibrahim OB, Ahmadi H, Shahmoradi L. An analytical method for diseases prediction using machine learning techniques. Comput Chem Eng 2017;106:212–23.
  • [16] Nilashi M, Ahmadi H, Shahmoradi L, Ibrahim O, Akbari E. A predictive method for hepatitis disease diagnosis using ensembles of neuro-fuzzy technique. J Infect Public Health 2019;12:13–20.
  • [17] Ahmadi H, Gholamzadeh M, Shahmoradi L, Nilashi M, Rashvand P. Diseases diagnosis using fuzzy logic methods: a systematic and meta-analysis review. Comput Methods Programs Biomed 2018;161:145–72.
  • [18] Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res 2014;15:3133–81.
  • [19] Davatzikos C, Fan Y, Wu X, Shen D, Resnick SM. Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging. Neurobiol Aging 2008;29:514–23.
  • [20] Gao L, Pan H, Li Q, Xie X, Zhang Z, Han J, et al. Brain medical image diagnosis based on corners with importance-values. BMC Bioinformatics 2017;18:505–17.
  • [21] Verleysen M, François D. The curse of dimensionality in data mining and time series prediction. In: Joan Cabestany, Alberto Prieto, Hernández FS, editors. Proc of the 8th Int Work-Conf Artif Neural Netw.. Vilanova i la Geltrú, Barcelona, Spain: Springer Berlin; 2005. p. 758–70.
  • [22] Cho SB, Won HH. Machine learning in DNA microarray analysis for cancer classification. In: Chen Y-P, editor. Proc of the First Asia-Pacific Bioinformatics Conf. 2003. pp. 189–98.
  • [23] Hijazi H, Chan C. A classification framework applied to cancer gene expression profiles. J Healthcare Eng 2013;4:255–83.
  • [24] Manchon U, Talevich E, Katiyar S, Rasheed K, Kannan N. Prediction and prioritization of rare oncogenic mutations in the cancer Kinome using novel features and multiple classifiers. PLoS Comput Biol 2014;10:e1003545.
  • [25] Keyvanfard F, Shoorehdeli MA, Teshnehlab M. Feature selection and classification of breast cancer on dynamic magnetic resonance imaging using ANN and SVM. Am J Biomed Eng 2011;1:20–5.
  • [26] Hawkins SH, Korecki JN, Balagurunathan Y, Gu Y, Kumar V, Basu S, et al. Predicting outcomes of nonsmall cell lung cancer using CT image features. IEEE Access 2014;2:1418–26.
  • [27] Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine learning methods for quantitative radiomic biomarkers. Sci Rep 2015;5:13087.
  • [28] Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P, Aerts HJWL. Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front Oncol 2015;5:272.
  • [29] Poretti A, Meoded A, Huisman TAGM. Neuroimaging of pediatric posterior fossa tumors including review of the literature. J Magn Reson Imaging 2012;35:32–47.
  • [30] Cole BL, Pritchard CC, Anderson M, Leary SE. Targeted sequencing of malignant supratentorial pediatric brain tumors demonstrates a high frequency of clinically relevant mutations. Pediatr Dev Pathol 2017;25. 109352661774390.
  • [31] Jansen JF, Backes WH, Nicolay K, Kooi ME. 1H MR spectroscopy of the brain: absolute quantification of metabolites. Radiology 2006;240:318–32.
  • [32] Rodriguez GD, Awwad A, Meijer L, Manita M, Jaspan T, Dineen RA, et al. Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors. Am J Neuroradiol 2014;35:1009–15.
  • [33] Fetit AE, Jan N, Peet AC, Arvanitits TN. Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours. NMR Biomed 2015;28:1174–84.
  • [34] Haury AC, Gestraud P, Vert JP. The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS One 2011;6: e28210.
  • [35] Mackin D, Fave X, Zhang L, Fried D, Yang J, Taylor B, et al. Measuring computed tomography scanner variability of radiomics features. Invest Radiol 2015;50:757–65.
  • [36] Kotsiantis SB, Kotsiantis SB. Supervised machine learning: a review of classification techniques. Informatica J 2007;31:249–68.
  • [37] Coroller TP, Bi WL, Huynh E, Abedalthagafi M, Aizer AA, Greenwald NF, et al. Radiographic prediction of meningioma grade by semantic and radiomic features. PLoS One 2017;12:e0187908.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0965e751-5ebb-4748-ae92-e7ec95676d01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.