PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studying the metakaolin content, fiber type, and high-temperature effects on the physico-mechanical properties of fly ash-based geopolymer composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study investigated the physicasl characteristics and mechanical performance of fly ash-based geopolymer composites when exposed to high temperatures. Geopolymer composites were produced using fly ash as an aluminosilicate-rich raw material and a combination of sodium silicate and sodium hydroxide as an alkaline activator. In this context, the study also examined the impact of partially replacing metakaolin (7.5% and 15% by weight). Furthermore, the study aims to examine the impact of adding fiber (basalt and carbon types) on the physical, mechanical, and high-temperature properties of geopolymer composites. The physical properties investigated were unit weight, apparent porosity, water absorption, and capillary water absorption, while the strength performances investigated were flexural and compressive strengths. To monitor the effect of high temperatures on the strength characteristics of the geopolymer composites, the mixtures were exposed to temperatures of 200 °C, 400 °C, and 600 °C. Besides, SEM images were provided to illustrate the degree of geopolimerization. The results indicated that metakaolin replacement yielded mixtures having higher unit weight, but lower apparent porosity and water absorption. The results indicated that metakaolin replacement yielded mixtures having a higher unit weight, reaching an increase of about 5%, but lower apparent porosity and water absorption, with decreases reaching 18.3% and 20%, respectively. The metakaolin-blended geopolymer composites resulted in better strength performance and resistance to high temperatures. Raising the metakaolin replacement level from 0 to 15% led to an increase of 17.3% in flexural strength. The compressive strength of the composites subjected to a temperature of 200 °C exhibited an increase of over 10%. Notably, this rate of increment was observed to be nearly 20% higher in nonfibrous composites. Fiber addition decreased the compressive strength up to about 21%, while increasing the flexural strength up to 65%. Strength performance improved at 200 °C, but decreased at higher temperatures up to 600 °C. The geopolymer composites experienced significant mass loss when exposed to high temperatures.
Rocznik
Strony
art. no. e2, 2025
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
  • Faculty of Engineering and Architecture, Civil Engineering Department, Kafkas University, 36100 Kars, Türkiye
  • Faculty of Engineering and Architecture, Civil Engineering Department, Kafkas University, 36100 Kars, Türkiye
  • Engineering Faculty, Civil Engineering Department, Hasan Kalyoncu University, 27010 Gaziantep, Türkiye
  • Engineering Faculty, Civil Engineering Department, Yaşar University, 35100, İzmir, Türkiye
  • Faculty of Engineering and Architecture, Civil Engineering Department, Bingöl University, 12000 Bingöl, Türkiye
  • Engineering Faculty, Civil Engineering Department, Atatürk University, 25030 Erzurum, Türkiye
  • Engineering Faculty, Civil Engineering Department, Harran University, 63290 Şanlıurfa, Türkiye
  • Engineering Faculty, Civil Engineering Department, Atatürk University, 25030 Erzurum, Türkiye
Bibliografia
  • 1. Raza MH, Khan M, Zhong RY. Strength, porosity and life cycle analysis of geopolymer and hybrid cement mortars for sustainable construction. Sci Total Environ. 2024;907:167839. https://doi.org/10.1016/j.scitotenv.2023.167839.
  • 2. Cruz Rios F, Grau D, Chong WK. Reusing exterior wall framing systems: a cradle-to-cradle comparative life cycle assessment. Waste Manage. 2019;94:120–35. https://doi.org/10.1016/j.was-man.2019.05.040.
  • 3. Öz A, Bekem Kara İ, Bayrak B, Kavaz E, Kaplan G, Cüneyt Aydın A. Characterization study of geopolymer concretes fabricated with clinker aggregates. Construct Build Mat. 2023;384:131461.https://doi.org/10.1016/j.conbuildmat.2023.131461.
  • 4. J. Davidovits, Global Warming Impact on the Cement and Aggre-gates Industries, 1994.
  • 5. Argalis PP, Sinka M, Bajare D. Recycling of cement-wood board production waste into a low-strength cementitious binder. Recycling. 2022;7:76. https://doi.org/10.3390/recycling7050076.
  • 6. Ekaputri J, Subaer S, Wijaya Y. Effect of curing temperaturę and fiber on metakaolin-based geopolymer. Procedia Eng.2017;171:572–83. https://doi.org/10.1016/j.proeng.2017.01.376.
  • 7. Mermerdaş K, İpek S, Sor NH, Mulapeer ES, Ekmen Ş. Theimpact of artificial light weight aggregate on the engineering features of geopolymer mortar. TJNS. 2020;9:79–90. https://doi.org/10.46810/tdfd.718895.
  • 8. D.J. Davidovits, Environmentally Driven Geopolymer Cement Applications., (n.d.).
  • 9. Bayrak B, Benli A, Alcan HG, Çelebi O, Kaplan G, Aydın AC. Recycling of waste marble powder and waste colemanite in ternary-blended green geopolymer composites: mechanical, durability and microstructural properties. J Build Eng. 2023;73:106661.https://doi.org/10.1016/j.jobe.2023.106661.
  • 10. Bayrak B, Öz A, Kavaz E, Kaplan G, Çelebi O, Alcan HG, Cüneyt Aydın A. Synergic effect of some waste pozzolans on the mechanical and shielding properties of geopolymer concretes. Radiat Eff Defects Solids. 2023;178:855–84. https://doi.org/10.1080/10420150.2023.2191849.
  • 11. Çelikten S, Erdoğan G. Effects of perlite/fly ash ratio and the curing conditions on the mechanical and microstructural properties of geopolymers subjected to elevated temperatures. Ceram Int.2022;48:27870–7. https://doi.org/10.1016/j.ceramint.2022.06.089.
  • 12. Han X, Zhang P, Zheng Y, Wang J. Utilization of municipal solid waste incineration fly ash with coal fly ash/metakaolin for geopolymer composites preparation. Constr Build Mater.2023;403:133060. https://doi.org/10.1016/j.conbuildmat.2023.133060.
  • 13. Beltrame NA, Dias RL, Witzke FB, Medeiros-Junior RA. Effect of carbonation curing on the physical, mechanical, and micro-structural properties of metakaolin-based geopolymer concrete. Construct Build Mat. 2023;406:133403. https://doi.org/10.1016/j.conbuildmat.2023.133403.
  • 14. İpek S, Mermerdaş K. Engineering properties and SEM analysis of eco-friendly geopolymer mortar produced with crumb rubber. JSCMT. 2022;7:95–107. https://doi.org/10.47481/jscmt.1106592.
  • 15. Shi J, Bayraktar OY, Bayrak B, Bodur B, Oz A, Kaplan G, Aydin AC. Physical, mechanical and microstructural properties of one-part semi-light weight geopolymers based on metakaolin modified with gypsum and lime. Mater Chem Phys. 2024;313:128681.https://doi.org/10.1016/j.matchemphys.2023.128681.
  • 16. John SK, Nadir Y, Girija K. Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: a review. Constr Build Mater.2021;280:122443. https://doi.org/10.1016/j.conbuildmat.2021.122443.
  • 17. Nawab MS, Ali T, Qureshi MZ, Zaid O, Ben Kahla N, Sun Y, Anwar N, Ajwad A. A study on improving the performance of cement-based mortar with silica fume, metakaolin, and coconut fibers. Case Stud Construct Mat. 2023;19:e02480. https://doi.org/10.1016/j.cscm.2023.e02480.
  • 18. R. Kumar, R. Singh, M. Patel, Effect of metakaolin on mechanical characteristics of the mortar and concrete: A critical review, Materials Today: Proceedings (2023). https://doi.org/10.1016/j.matpr.2023.07.262.
  • 19. İpek S. Macro and micro characteristics of eco-friendly fly ash-based geopolymer composites made of different types of recycleds and. J Build Eng. 2022;52:104431. https://doi.org/10.1016/j.jobe.2022.104431.
  • 20. Mermerdaş K, İpek S, Mahmood Z. Visual inspection and mechanical testing of fly ash-based fibrous geopolymer composites under freeze-thaw cycles. Constr Build Mater. 2021;283:122756. https://doi.org/10.1016/j.conbuildmat.2021.122756.
  • 21. Görhan G, Kürklü G. Investigation of the effect of metakaolin substitution on physicomechanical properties of fly ash-based geopolymer mortars. Mat Today: Proceed. 2023;81:35–42. https://doi.org/10.1016/j.matpr.2022.11.402.
  • 22. Gómez-Casero MA, De Dios-Arana C, Bueno-Rodríguez JS, Pérez-Villarejo L, Eliche-Quesada D. Physical, mechanical and thermal properties of metakaolin-fly ash geopolymers. Sustain Chem Pharm. 2022;26:100620. https:// doi. org/ 10. 1016/j. scp.2022.100620.
  • 23. Nuaklong P, Sata V, Chindaprasirt P. Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens. Constr Build Mater.2018;161:365–73. https://doi.org/10.1016/j.conbuildmat.2017.11.152.
  • 24. Wang Z, Bai E, Ren B, Lv Y. Effects of temperature and basalt fiber on the mechanical properties of geopolymer concrete under impact loads of different high strain rates. J Build Eng.2023;72:106605. https://doi.org/10.1016/j.jobe.2023.106605.
  • 25. Mermerdaş K, Mulapeer ES, Oleiwi SM. Effect of glass fiber addition on the strength properties and pore structure of fly ash based geopolymer composites. Eskişehir Techn Univ J Sci Technol A–Appl Sci Eng. 2019;20:427–35. https://doi.org/10.18038/estubtda.505754.
  • 26. Şahin F, Uysal M, Canpolat O, Aygörmez Y, Cosgun T, Dehghanpour H. Effect of basalt fiber on metakaolin-based geopolymer mortars containing rilem, basalt and recycled waste concrete aggregates. Constr Build Mater. 2021;301:124113. https://doi.org/10.1016/j.conbuildmat.2021.124113.
  • 27. Ghanem SY, Bowling J. Mechanical properties of carbon-fiber–reinforced concrete. Adv Civ Eng Matls. 2019;8:224–34. https://doi.org/10.1520/ACEM20180089.
  • 28. Standard Specification for Coal Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, (n.d.). https://www.astm.org/c0618-23e01.html (accessed October 30, 2023).
  • 29. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, (n.d.). https://www.astm.org/c0642-21.html(accessed January 25, 2024).
  • 30. Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, (n.d.). https://www.astm.org/c0348-20.html (accessed October 30, 2023).
  • 31. Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars (Using Portions of Prisms Broken in Flexure),(n.d.). https://www.astm.org/c0349-18.html (accessed October 30,2023).
  • 32. E. Standards, BS EN 1015–18:2002 Methods of test for mortar for masonry Determination of water absorption coefficient dueto capillary action of hardened mortar, https://www.en-standard.eu/(n.d.). https://www.en-standard.eu/bs-en-1015-18-2002-methods-of-test-for-mortar-for-masonry-determination-of-water-absorption- coeffi cient- due- to- capil lary- action- of- harde ned- mortar/(accessed January 25, 2024).
  • 33. Jithendra C, Dalawai VN, Elavenil S. Effects of metakaolin and sodium silicate solution on workability and compressive strength of sustainable Geopolymer mortar. Mat Today: Proceed.2022;51(3):1580–4. https://doi.org/10.1016/j.matpr.2021.10.399.
  • 34. Wang Y, Aslani F, Valizadeh A. An investigation into the mechanical behaviour of fibre-reinforced geopolymer concrete incorporating NiTi shape memory alloy, steel and polypropylene fibres. Constr Build Mater. 2020;259:119765. https://doi.org/10.1016/j.conbuildmat.2020.119765.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0965bcf3-50a1-477e-9e19-08cc36fad97d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.