Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of a complex comparative analysis of the abrasive wear resistance of tools made of X153CrMoV12 steel after different heat treatment variants. These investigations aimed to select the most durable material for application in tools forming a mass band in the production of ceramic roof tiles. The tests included the determination of resistance to abrasive wear in ball-on-disc tests, hardness measurements, and microstructure analysis, including the assessment of changes occurring in the subsurface area, as well as impact tests (at a working temperature for the tools of 50°C). The comprehensive test results showed that the best effects of increasing the resistance to abrasive wear can be obtained through a heat treatment that consists of hardening at 1020°C and then tempering at 200°C for about 2 hours. The next stage of research will be to compare the results obtained with another popular material for tools for the production of roof tiles - Hardox steel, which is characterized by high resistance to abrasive wear.
Wydawca
Czasopismo
Rocznik
Tom
Strony
94--109
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Wroclaw University of Science and Technology, Wroclaw, Poland
autor
- Wroclaw University of Science and Technology, Wroclaw, Poland
- Röben Polska, Środa Śląska, Poland
autor
- Wroclaw University of Science and Technology, Wroclaw, Poland
autor
- Wroclaw University of Science and Technology, Wroclaw, Poland
autor
- Wroclaw University of Science and Technology, Wroclaw, Poland
Bibliografia
- [1] Radziszewski P. The steel wheel abrasion test (SWAT): a tool to study wear, friction and ore breakage in the mining industry. Wear 2009; 267:92–8. https: //doi.org/10.1016/j.wear.2009.01.003.
- [2] Holmberg K, Kivikytö-Reponen P, Härkisaari P, Valtonen K, Erdemir A. Global energy consumption due to friction and wear in the mining industry. Tribology International. 2017; 115:116–39. https://doi.org/10.1016/j.triboint.2017.05.010.
- [3] Ligier K, Zemlik M, Lemecha M, Konat Ł, Napiórkowski J. Analysis of wear properties of Hardox steels in different soil conditions. Materials. 2022; 15:7622. https://doi.org/10.3390/ma15217622.
- [4] Tavodová M, Vargová M, Krilek J, Stančeková D. Analysis of damaged delimber knives and the possibility of increasing their service life. Manufacturing Technology. 2022; 22:80–8. https://doi.org/10.21062/mft.2022.0H.
- [5] Mirski Z, Fałek Z. Welded containers for scrap and debris transport of 450 Hardox steel. Przeglad Spawalnictwa 2015; 87. https://doi.org/10.26628/ps.v87i8.428.
- [6] Illera LC, Illera CC, Contreras KA. Raw material for the ceramic industry in Norte de Santander. III. Assessment of the technological properties when the residue test of deep abrasion is added. Boletín de La Sociedad Española de Cerámica y Vidrio. 2015; 54:77–83. https://doi.org/10.1016/j.bsecv.2015.03.005.
- [7] Händle F. Mixing and kneading: the art of ceramic extrusion. Cham: Springer International Publishing; 2019. p. 49–55. https: //doi.org/10.1007/978-3-030-05255-3_7.
- [8] Vergnes B. Influence of processing conditions on the preparation of clay-based nanocomposites by twinscrew extrusion. International Polymer Processing. 2019; 34:482–501. https: //doi.org/10.3139/217.3827.
- [9] Wiedmann W, Hölzel M. Twin-screw extruders in ceramic extrusion. In: Händle F, editor. Extrusion in ceramics, Berlin, Heidelberg: Springer Berlin Heidelberg; 2009, p. 241–58. https://doi.org/10.1007/978-3-540-27102-4_13.
- [10] Berger H. Dies, pressure heads, strainer plates and more. In: Händle F, editor. Extrusion in ceramics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009, p. 221–39. https://doi.org/10.1007/978-3-540-27102-4_12.
- [11] Marzec J, Hawryluk M, Rychlik M, Lachowicz MM, Suliga M. Preliminary studies of the durability of tools used to form ceramic tiles made of Hardox 600 and NC11LV steel. Materials. 2021; 14:1262. https://doi.org/10.3390/mal4051262.
- [12] Konat Ł, Jasiński R, Białobrzeská B, Szczepanski Ł. Analysis of the static and dynamic properties of wear-resistant Hardox 600 steel in the context of its application in working elements. Materials Science-Poland. 2021; 39:86–102. https://doi.org/10.2478/msp-2021-0007.
- [13] Berkowski L. Influence of structure on the effects of nitriding chromium ledeburitic steels. Part 1: Information about test materials (in Polish). Obróbka Plastyczna Metali. n.d.:2005.
- [14] Berkowski L, Borkowski J. The influence of structure of the results of the nitriding of ledeburitic chromium steels. Part III. Heat treatment conditions of NC11LV steel. Obróbka Plastyczna Metali. 2007; XVIII:3–12.
- [15] Budzyński P, Tarkowski P, Penkała P. Influence of nitrogen ion implantation on tribological properties of tool steel NC10. Vacuum. 2001; 63:731–6. https://doi.org/10.1016/S0042-207X(01)00266-4.
- [16] Hryniewicz T, Nykiel T. Fluctuations in chemical composition of M-7C3 carbides in the soft annealed Nc11lv/D2 steel. Advances in Materials Science. 2014; 14:24–30. https://doi.org/10.2478/adms-2014-0003.
- [17] Kondrat’ev SYu, Kraposhin VS, Anastasiadi GP, Talis AL. Experimental observation and crystallographic description of M7C3 carbide transformation in Fe–Cr–Ni–C HP type alloy. Acta Materialia. 2015; 100:275–81. https://doi.org/10.1016/j.actamat.2015. 08.056.
- [18] Wieczerzak K, Bala P, Dziurka R, Tokarski T, Cios G, Koziel T, et al. The effect of temperature on the evolution of eutectic carbides and M7C3 → M23C6 carbides reaction in the rapidly solidified Fe-Cr-C alloy. Journal of Alloys and Compounds. 2017; 698:673–84. https: //doi.org/10.1016/j.jallcom.2016.12.252.
- [19] Januszewicz B, Wołowiec E, Kula P. The role of carbides in formation of surface layer on steel X153CrMoV12 due to low-pressure nitriding (vacuum nitriding). Metal Science and Heat Treatment. 2015; 57:32–5. https://doi.org/10.1007/sll041-015-9830-5.
- [20] Berkowski L, Borkowski J. The influence of structure on the results of the nitriding of ledeburitic chromium steels. Part VIII. Investigation of utilization properties of tool materials. Obróbka Plastyczna Metali. 2009; XX:3–16.
- [21] Hawryluk M, Lachowicz MM, Marzec J, Nowak K, Suliga M. Comparative analysis of the wear of NC11LV and Hardox 600 steel used in tools for extrusion of clay strands in the process of producing ceramic roof tiles. Materials. 2022; 16:293. https://doi.org/10.3390/ma16010293.
- [22] Rendón J, Olsson M. Abrasive wear resistance of some commercial abrasion resistant steels evaluated by laboratory test methods. Wear. 2009; 267:2055–61. https: //doi.org/10.1016/j.wear.2009.08.005.
- [23] Dohda K, Boher C, Rezai-Aria F, Mahayotsanun N. Tribology in metal forming at elevated temperatures. Friction. 2015; 3:1–27. https://doi.org/10.1007/s40544-015-0077-3.
- [24] Białobrzeska B. The influence of boron on the resistance to abrasion of quenched low-alloy steels. Wear. 2022; 500-501:204345. https: //doi.org/10.1016/j.wear.2022.204345.
- [25] Bender W. Types of extrusion units. In: Händle F, editor. Extrusion in ceramics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009, p. 59–84. https://doi.org/10.1007/978-3-540-27102-4_4.
- [26] Albertin E, Sinatora A. Effect of carbide fraction and matrix microstructure on the wear of cast iron balls tested in a laboratory ball mill. Wear. 2001; 250:492–501. https://doi.org/10.1016/S0043-1648(01)00664-0.
- [27] Wilmes S, Zwick G. Effect of niobium and vanadium as an alloying element in tool steels with high chromium content, Proceedings of the 6th International Tooling Conference: the use of tool steels: experience and research; Karlstad, Sweden, 10 - 13 September 2002
- [28] Doğan ÖN, Hawk JA. Effect of carbide orientation on abrasion of high Cr white cast iron. Wear. 1995; 189:136–42. https://doi.org/10.1016/0043-1648(95)06682-9.
- [29] Cabrol E, Bellot C, Lamesle P, Delagnes D, Povoden-Karadeniz E. Experimental investigation and thermodynamic modeling of molybdenum and vanadium-containing carbide hardened iron-based alloys. Journal of Alloys and Compounds. 2013; 556:203–9. https: //doi.org/10.1016/j.jallcom.2012.12.H9.
- [30] Gorunov AI. Investigation of M7C3, M23C6 and M3C carbides synthesized on austenitic stainless steel and carbon fibers using laser metal deposition. Surface and Coatings Technology. 2020; 401:126294. https://doi.org/10.1016/j.surfcoat.2020.126294.
- [31] Novák P, Nová K, Jaworska L, Shishkin A. Identification of carbides in tool steel by selective etching. Defect and Diffision Forum. 2019; 395:55–63. https: //doi.org/10.4028/www.scientific.net/DDF.395.55.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0960774f-22b1-42b6-be84-b06137971636