PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Continuous magma mixing and cumulate separation in the High Tatra Mountains open system granitoid intrusion, Western Carpathians (Poland/Slovakia): a textural and geochemical study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study the formation of the polygenetic High Tatra granitoid magma is discussed. Felsic and mafic magma mixing and mingling processes occurred in all magma batches composing the pluton and are documented by the typical textural assemblages, which include: mafic microgranular enclaves (MME), mafic clots, felsic clots, quartz-plagioclase-titanite ocelli, biotite-quartz ocelli, poikilitic plagioclase crystals, chemically zoned K-feldspar phenocrysts with inclusion zones and calcic spikes in zoned plagioclase. Geochemical modelling indicates the predominance of the felsic component in subsequent magma batches, however, the mantle origin of the admixed magma input is suggested on the basis of geochemical and Rb-Sr, Sm-Nd and Pb isotopic data. Magma mixing is considered to be a first-order magmatic process, causing the magma diversification. The cumulate formation and the squeezing of remnant melt by filter pressing points to fractional crystallization acting as a second-order magmatic process.
Rocznik
Strony
549--570
Opis fizyczny
Bibliogr. 62 poz. rys., tab., wykr.
Twórcy
  • Faculty of Earth Sciences, University of Silesia in Katowice, ul. Będzińska 60, 41-200 Sosnowiec, Poland
  • Faculty of Earth Sciences, University of Silesia in Katowice, ul. Będzińska 60, 41-200 Sosnowiec, Poland
  • Faculty of Earth Sciences, University of Silesia in Katowice, ul. Będzińska 60, 41-200 Sosnowiec, Poland
  • Faculty of Earth Sciences, University of Silesia in Katowice, ul. Będzińska 60, 41-200 Sosnowiec, Poland
  • Department of Geology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
  • Polish Geological Institute-National Research Institute, ul. Rakowiecka 4, Warsaw, Poland
Bibliografia
  • 1. Anczkiewicz, A.A., Danisik, M. and Środoń, J. 2015. Multiple low-temperature thermochronology constraints on exhumation of the Tatra Mountains: New implication for the complex evolution of the Western Carpathians in the Cainozoic. Tectonics, 34, 2296–2317.
  • 2. Baxter, S. and Feely, M. 2002. Magma mixing and mingling textures in granitoids: examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology, 76, 63–74.
  • 3. Burda, J. and Gawęda, A. 2009. Shear-influenced partial melting in the Western Tatra metamorphic complex: geochemistry and geochronology. Lithos, 110, 373–385.
  • 4. Burda, J., Gawęda, A. and Klötzli, U. 2011. Magma hybridization in the Western Tatra Mountains granitoid intrusion (S-Poland, Western Carpathians). Mineralalogy and Petrology, 103, 19–36.
  • 5. Burda, J., Gawęda, A. and Klötzli, U. 2013. U-Pb zircon age of the youngest magmatic activity in the High Tatra granite. Geochronometria, 40 (2), 134–144.
  • 6. Cassini, L., Cuccuru, S., Puccini, A., Oggiano, G. and Rossi, P. 2015. Evolution of Corsica-Sardinia Batholith and late-orogenic shearing of the Variscides. Tectonophysics, 646, 65–78.
  • 7. Clemens, J.D. and Bezuidenhout, A. 2014. Origins of co-existing divers magmas in a felsic pluton: the Lysterfield granodiorite, Australia. Contribution to Mineralogy and Petrology, 167 (3), 991.
  • 8. Coleman, D.S., Gray, W. and Glazner, A.F. 2004. Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology, 32, 433–436.
  • 9. Crowley, Q. and Feely, M. 1997. New perspectives on the order and style of pluton emplacement from the Galway Granite Batholith, Western Ireland. Geological Magazine, 134, 539–548.
  • 10. Davies, J.H. and von Blankenburgh, F. 1995. Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters, 129, 85–102.
  • 11. DePaolo, J. 1981a. Neodymium isotopes in the Colorado Front range and Crust-mantle evolution in the Proterozoic. Nature, 291, 193–196.
  • 12. DePaolo, J. 1981b. A Nd and Sr isotopic studybof Mesozoic calc-alkaline batholiths of the Siera Nevada and Penisular ranges, California. Journal of Geophisical Research, 86, 10370–10488.
  • 13. Didier, J. 1991. The main types of enclaves in the Hercynian granitoids of the Massif Central, France. In: Didier, J. and Barbarin, B. (Eds), Enclave and granite petrology. Developments in Petrology, 13, pp. 47–61, Elsevier; Amsterdam.
  • 14. Didier, J. and Barbarin, B. 1991. The different types of enclaves in granites – nomenclature. In: Didier, J. and Barbarin, B. (Eds), Enclave and granite petrology. Developments in Petrology, 13, pp. 19–23, Elsevier; Amsterdam.
  • 15. Domańska-Siuda, J., Słaby, E. and Szuszkiewicz, A. 2019. Ambiguous isotopic and geochemical signatures resulting from limited melt interactions in a seemingly composite pluton: a case study from the Strzegom.Sobótka Massif (Sudetes, Poland). International Journal of Earth Sciences, 108, 931–962.
  • 16. Eklund, O. and Shebanov, A.D. 1999. The origin of rapakivi texture by sub-isothermal decompression. Precambrian Research, 95, 129–146.
  • 17. Evart, A. and Griffin, W.L. 1994. Application of proton microprobe data to trace element partitioning in volcanic rocks. Chemical Geology, 117, 251–284.
  • 18. Fianacca, P., Cirricione, R., Bonanno, F. and Carciotto, M.M. 2015. Source-inherited compositional diversity in granite batholiths: The geochemical message of Late Paleozoic intrusive magmatism in central Calabria (southern Italy). Lithos, 236-237, 123–140.
  • 19. Flood, R.H. and Shaw, S.E. 2014. Microgranitoid enclaves in the felsic Looanga monzogranite, New England Batholith, Australia: pressure quench cumulates. Lithos, 198-199, 92–102.
  • 20. Fourcade, S. and Allègre, C.J. 1981. Trace element behaviour in granite genesis: a case study. The calc-alkaline plutonic association from Querigut complex (Pyrénées, France). Contribution to Mineralogy and Petrology, 76, 177–195.
  • 21. Frost, T.P. and Mahood, G.A. 1987. Field, chemical, and physical constraints on mafic-felsic magma interaction in the Lamarck Granodiorite, Sierra Nevada, California. Geological Society of America Bulletin, 99, 272–291.
  • 22. Gawęda, A. 2008. Apatite-rich enclave in the High Tatra granite, Western Carpathians: petrological and geochronological study. Geologica Carpathica, 59 (4), 295–306
  • 23. Gawęda A. 2009. Enclaves in the High Tatra granite. Monographic series 2637, 180 p. University of Silesia publishing House; Katowice. [in Polish, English abstract]
  • 24. Gawęda, A. and Szopa, K. 2011. The origin of magmatic layering in the High Tatra granite, Central Western Carpathians – implications for the formation of granitoid plutons. Earth and Environmental Sciences Transactions of the Royal Society of Edinburgh, 103, 129–144.
  • 25. Gawęda, A. and Włodyka, R. 2012. The origin of post-magmatic Ca-Al minerals in granite-diorite mingling zones: The Tatra granitoid intrusion, Western Carpathians. Neues Jahrbuch fur Mineralogie Abhandlungen, 190 (1), 29–47.
  • 26. Gawęda, A., Szopa, K. and Chew, D. 2014. LA-ICP-MS U-Pb dating and REE patterns of apatite from the Tatra Mountains, Poland as a monitor of the thermal events. Geochronometria, 41, 306–314.
  • 27. Gawęda, A., Burda, J., Klötzli, U., Golonka, J. and Szopa, K. 2016. Episodic construction of the Tatra granitoid intrusion (Central Western Carpathians, Poland/Slovakia): consequences for the geodynamics of Variscan collision and Rheic Ocean closure. International Journal of Earth Sciences, 105, 1153–1174.
  • 28. Gawęda, A., Szopa, K., Chew, D., O`Sulllivan, G.J., Burda, J., Klötzli, U. and Golonka, J. 2018. Variscan post-collisional cooling and uplift of the Tatra Mountains crystalline block constrained by integrated zircon, apatite and titanite LA- (MC)-ICP-MS U-Pb dating and rare earth element analyses. Chemical Geology, 484, 191–209.
  • 29. Grabowski, J. and Gawęda, A. 1999. Preliminary paleomagnetic study of the High Tatra granites, Central Western Carpathians, Poland. Geological Quarterly, 43 (3), 263–276.
  • 30. Hibbard, M.J. 1991.Textural anatomy of twelve magma-mixed granitoid systems. In: Didier, J. and Barbarin, B. (Eds), Enclaves and Granite Petrology. Developments in Petrology 13, pp. 431–444. Elsevier; Amsterdam.
  • 31. Johannes, W. and Holtz, F. 1996. Petrogenesis and experimental petrology of granitic rocks, 335 p. Springer Verlag; Berlin.
  • 32. Jurewicz, E. 2005. Geodynamic evolution of the Tatra Mts. and the Pieniny Klippen Belt (Western Carpathians): problems and comments. Acta Geologica Polonica, 55, 295–338.
  • 33. Kohut, M. and Janak, M. 1994. Granitoids of the Tatra Mts., Western Carpathians: Field relations and petrogenetic implications. Geologica Carpathica 45 (5), 301–311.
  • 34. Liew, T.C. and Hofmann, A.W. 1988. Precambrian crustal components, plutonic associations, plate environment of the Hrcynian Fold Belt of Central Europe: Indications from a Nd and Sr isotopic study. Contribution to Mineralogy and Petrology, 98, 129–138.
  • 35. Mazur, S., Aleksandrowski, P., Turniak, K. and Awdankiewicz, M. 2007. Geology, tectonic evolution and Late Palaeozoic magmatism of Sudetes – an overview. In: Kozłowski, A., and Wiszniewska, J. (Eds), Granitoids in Poland. AM Monograph 1, 59–87
  • 36. Middlemost, E.A.K. 1985. Magmas and magmatic rocks. An introduction to igneous petrology, 266 p. Longman Group Ltd.; London-New York.
  • 37. Miller, C.F., Furbish, D.J., Walker, B.A., Claiborne, L.L., Koteas, C.G., Bleick, H.A. and Miller, J.S. 2011. Growth of plutons by incremental emplacement of sheets in crystal-rich host: Evidence from Miocene intrusions of the Colorado River region, Nevada, USA. Tectonophysics, 500, 65–77
  • 38. Müller, A., Breiter, K., Seltmann, R. and Petskay, Z. 2005. Quartz and feldspar zoning in the eastern Erzgebirge volcano-plutonic complex (Germany, Czech Republic): evidence of multiple magma mixing. Lithos, 80, 201–227.
  • 39. Nebel, O., Mezger, K., Scherer, E.E. and Munker, C. 2005. High precision determinations of 87Rb/85Rb in geologic materials by MC-ICP-MS. International Journal of Mass Spectrometry, 246 (1-3), 10–18.
  • 40. Nekvasil, H. 1991. Ascent of felsic magmas and formation of rapakivi. American Mineralogist, 76, 1279–1290.
  • 41. Oberc-Dziedzic, Paterson, S.R., Fowler, T.K., Schmidt, K.L., Yoshinobu, A.S., Yuan, E.S. and Miller, R.B. 1998. Interpreting magmatic fabric patterns in plutons. Lithos, 44, 53–82.
  • 42. Paterson, S.R., Okaya, D., Memeti, V., Economos, R. and Miller, R.B. 2011. Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs: combined field, geochronologic and thermal modelling studies. Geosphere, 7 (6), 1439–1468.
  • 43. Patiño Douce, A. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro, A., Fernandez, C. and Vigneresse, J.L. (Eds), Understanding granites. Integrating New and Classical Techniques, pp. 55–75, Geological Society Special Publication, 158 {168?}; London.
  • 44. Peccerillo, A. and Taylor, S.R. 1976. Geochemistry of Eocene calk-alkaline volcanic rocks from Kastamonu area, northern Turkey. Contribution to Mineralogy and Petrology, 58, 63–81.
  • 45. Pupier, E., Barbey, P., Toplis, M.J. and Bussy, F. 2008. Igneous layering, fractional crystallization and growth of granitic plutons: the Dolbel Batholith in SW Niger. Journal of Petrology, 49 (6), 1043–1068.
  • 46. Rollinson, H. 1993. Using geochemical data. Evaluation, presentation, interpretation, 352 p. Longman; London.
  • 47. Rudnick, R. and Gao, S. 2004. Composition of the continental crust. Treatise on geochemistry, 3, 1–64.
  • 48. Słaby, E. and Götze, J. 2004. Feldspar crystallization under magma-mixing conditions shown by cathodoluminescence and geochemical modelling – a case study from the Karkonosze pluton (SW Poland). Mineralogical Magazine, 68, 541–557.
  • 49. Słaby, E., Galbarczyk-Gąsiorowska, L., Seltman, R. and Müller, A. 2007. Alkali feldspar megacryst growth: geochemical modelling. Mineralogy and Petrology, 89, 1–29.
  • 50. Słaby, E. and Martin, H. 2008. Mafic and felsic magma interaction in granites: the Hercynian Karkonosze pluton (Sudetes, Bohemian Massif). Journal of Petrology, 49 (2), 353–391.
  • 51. Słaby, E., Gotze, J., Worner, G., Simon, K., Wrzalik, R. and Śmigielski, M. 2008. K-feldspar phenocrysts in microgranular magmatic enclaves: A cathodoluminescence and geochemical study of crystal growth as a marker of magma mingling dynamics. Lithos, 105, 85–97.
  • 52. Słaby, E., Śmigielski, M., Śmigielski, T., Domonik, A., Simon, K. and Kronz, A. 2011. Chaotic three-dimentional distribution of Ba, Rb and Sr in feldspar megacrysts grown in an open magmatic system. Contribution to Mineralogy and Petrology, 162, 909–927.
  • 53. Spencer, K.J. and Lindsley, D.H. 1981. A solution model for co-existing iron-titanium oxides. American Mineralogist, 66, 1189–1201.
  • 54. Sun, S.S.and McDonough, W.F. 1995. The composition of the Earth. Cheical Geology, 120, 223–253.
  • 55. Sylvester, P.J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45, 29–44
  • 56. Szopa, K., Gawęda, A., Müller, A. and Sikorska, M. 2013. The petrogenesis of granitoid rocks unusually rich in apatite in the Western Tatra Mts. (S-Poland, Western Carpathians). Mineralogy and Petrology, 107, 609–627.
  • 57. Vernon, R.H. 2004. A practical guide to rock microstructure, 594 p. Cambridge University Press; Cambridge.
  • 58. Vernon, R.H. and Paterson, S.R. 2008. Mesoscopic structures resulting from crystal accumulation and melt movement in granites. Transactions of the Royal Society of Edinburgh: Earth Environmental Sciences, 97, 369–381.
  • 59. Waight, T., Baker, J. and Willigers, B. 2002. Rb isotope dilution analyses by MC-ICPMS using Zr to correct for mass fractionation: Towards improved Rb-Sr geochronology? Chemical Geology, 186, 99–116
  • 60. Waight, T.E., Wiebe, R.A. and Krogstad, E.J. 2007. Isotopic evidence for multiple contributions to felsic magma chambers: Gouldsboro Granite, Coastal Maine. Lithos, 93, 234–247.
  • 61. Wiebe, R.A., Blair, K.D., Hawkins, D.P. and Sabine, C.P. 2002. Mafic injections, in situ hybridization, and crystal accumulation in the Pyramid Peak granite, California. Geological Society of America Bulletin, 114, 909–920.
  • 62. Žak, J., Paterson, S.R., Janoušek, V. and Kabele, P. 2009. The mammoth Peak sheeted complex, Tuolumne batholith, Sierra Nevada, California: a record of initial growth or late thermal contraction in a magma chamber? Contribution to Mineralogy and Petrology, 158, 447–470.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-095a43c6-e12c-4377-9110-5062d9ce91a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.