Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The selection of a proper set of views to materialize plays an important role in database performance. There are many methods of view selection that use different techniques and frameworks to select an efficient set of views for materialization. In this paper, we present a new efficient scalable method for view selection under the given storage constraints using a tree mining approach and evolutionary optimization. The tree mining algorithm is designed to determine the exact frequency of (sub)queries in the historical SQL dataset. The Query Cost model achieves the objective of maximizing the performance benefits from the final view set that is derived from the frequent view set given by the tree mining algorithm. The performance benefit of a query is defined as a function of query frequency, query creation cost, and query maintenance cost. The experimental results show that the proposed method is successful in recommending a solution that is fairly close to an optimal solution.
Wydawca
Czasopismo
Rocznik
Tom
Strony
431--455
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Visvesvaraya National Institute of Technology, Computer Science & Engineering Department, South Ambazari Road, Nagpur (Maharashtra) India 440010
autor
- Visvesvaraya National Institute of Technology, Computer Science & Engineering Department, South Ambazari Road, Nagpur (Maharashtra) India 440010
Bibliografia
- [1] Afrati F., Chirkova R.: Selecting and using views to compute aggregate queries, Journal of Computer and System Sciences vol. 77(6), pp. 1079-1107, 2011. http s://doi.org/10.1016/j.jcss.2010.10.003.
- [2] Aouiche K., Jouve P., Darmont J.: Clustering-Based Materialized View Selection in Data Warehouses. In: Manolopoulos Y., Pokorn J., Sellis T.K. (eds.), Advances in Databases and Information Systems. 10th East European Conference, ADBIS 2006, Thessaloniki, Greece, September 3-7, 2006. Proceedings, Lecture Notes in Computer Science, vol. 4152, Springer, Berlin-Heidelberg, pp. 81-95, 2006. https://doi.org/10.1007/11827252 9.
- [3] Ezeife C.I.: A uniform approach for selecting views and indexes in a data ware- house. In: Proceedings of the 1997 International Database Engineering and Applications Symposium (Cat. No.97TB100166), Montreal, Quebec, Canada, pp. 151-160, 1997. https://doi.org/10.1109/IDEAS.1997.625671.
- [4] Gong A., Zhao W.: Clustering-Based Dynamic Materialized View Selection Algorithm. In: 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, FSKD'08, Shandong, China, pp. 1333-1348, 2008. https: //doi.org/10.1109/FSKD.2008.96.
- [5] Goswami R., Bhattacharyya D.K., Dutta M.: Materialized view selection using evolutionary algorithm for speeding up big data query processing, Journal of Intelligent Information Systems, vol. 49(3), pp. 407-433, 2017. https://doi.org/10.1007/s10844-017-0455-6.
- [6] Gupta H., Selection of views to materialize in a data warehouse. In: Afrati F., Kolaitis P. (eds.), Database Theory - ICDT'97. 6th International Conference Delphi, Greece, January 8-10, 1997 Proceedings, Lecture Notes in Computer Science, vol. 1186, Springer, Berlin-Heidelberg, pp. 98-112, 1997. https://doi. org/10.1007/3-540-62222-5 39.
- [7] Gupta H., Mumick I.S.: Selection of views to materialize in a data warehouse, IEEE Transactions on Knowledge and Data Engineering, (17)1, pp. 24-43, 2005. https://doi.org/10.1109/TKDE.2005.16.
- [8] Gupta H., Mumick I.S.: Selection of Views to Materialize Under a Maintenance Cost Constraint. In: Beeri C., Buneman P. (eds.), Database Theory - ICDT99. 7th International Conference Jerusalem, Israel, January 10{12, 1999 Proceedings, Lecture Notes in Computer Science, vol. 1540, Springer, Berlin{Heidelberg, pp. 453-470, 1999. https://doi.org/10.1007/3-540-49257-7 28.
- [9] Harinarayan V., Rajaraman A., Ullman J.D.: Implementing data cubes efficiently. In: Proceedings of the 1996 ACM SIGMOD international conference on Management of data, pp. 205-216, 1996. https://doi.org/10.1145/235968.2 33333.
- [10] Horng, J-T., Chang Y-J., Liu B-J.: Applying evolutionary algorithms to materialized view selection in a data warehouse, Soft Computing, vol. 7(8), pp. 574-581, 2003. https://doi.org/10.1007/s00500-002-0243-1.
- [11] Hung M.-C., Huang M.-L., Yang D.-L., Hsueh N.-L.: Efficient approaches for materialized views selection in a data warehouse, Information Sciences, vol. 177(6), pp. 1333-1348, 2007. https://doi.org/10.1016/j.ins.2006.09.007.
- [12] Hylock R., Currim F.: A maintenance centric approach to the view selection problem, Information Systems, vol. 38(7), pp. 971-987, 2013. https://doi.or g/10.1016/j.is.2013.03.005.
- [13] Kumar A., Vijay Kumar T.V.: Improved Quality View Selection for Analytical Query Performance Enhancement Using Particle Swarm Optimization, International Journal of Reliability, Quality and Safety Engineering, vol. 24(6), p. 1740001, 2017. https://doi.org/10.1142/S0218539317400010.
- [14] Lin W.Y., Kuo I.C.: A Genetic Selection Algorithm for OLAP Data Cubes, Knowledge and Information Systems, vol. 6(1), pp. 83-102, 2004. https://doi. org/10.1007/s10115-003-0093-x.
- [15] Mohammad K.S., Vahid G.: Materialized View Selection for a Data Warehouse Using Frequent Itemset Mining, Journal of Computers, vol. 11(2), pp. 140-148, 2016. https://doi.org/10.17706/jcp.11.2.140-148.
- [16] Ross K.A., Srivastava D., Sudarshan S.: Materialized view maintenance and integrity constraint checking: trading space for time. In: Proceedings of the 1996 ACM SIGMOD international conference on Management of data, pp. 447-458, 1996. https://doi.org/10.1145/235968.233361.
- [17] Vishwanath P.R., Rajyalakshmi, Reddy S.: An Association Rule Mining for Ma- terialized View Selection and View Maintenance, International Journal of Computer Applications, vol. 109(5), pp. 15-20, 2015. https://doi.org/10.5120/19 184-0670.
- [18] Yang J., Karlapalem K., Li Q.: Algorithms for Materialized View Design in Data Warehousing Environment. In: VLDB'97 Proceedings of the 23rd International Conference on Very Large Data Bases, Morgan Kaufmann Publishers, San Francisco, pp. 136-145, 1997
- [19] Yang J., Karlapalem K., Li Q.: A framework for designing materialized views in data warehousing environment. In: Proceedings of 17th IEEE International Conference on Distributed Computing Systems, Maryland, USA, 1997. https: //doi.org/10.1109/ICDCS.1997.603380.
- [20] Zhang C., Yang J.: Genetic Algorithm for Materialized View Selection in Data Warehouse Environments. In: Mohania M., Tjoa A.M. (eds.), DataWarehousing and Knowledge Discovery. First International Conference, DaWaK'99 Florence, Italy, August 30 - September 1, 1999 Proceedings, Lecture Notes in Computer Science, vol. 1676. Springer, Berlin-Heidelberg, pp. 116-125, 1999. https://do i.org/10.1007/3-540-48298-9 12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0954a147-b0f5-4264-906b-cc45b708bb47