PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Advancing flood disaster management: leveraging deep learning and remote sensing technologies

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Floods are among the most widespread and devastating natural disasters, accounting for 47% of all weather-related events and affecting over 2.3 billion people, particularly in Asia. Assessing flood-prone areas is crucial for effective disaster risk reduction, but existing flood damage estimation methods, such as depth-damage functions, often lack regional adaptability and accuracy. This study addresses this gap by integrating geospatial data, remote sensing, and artificial intelligence (AI) to identify flood-affected areas in the Kan basin, Tehran. We applied deep learning methods, specifically U-Net and fully convolutional neural network (FCN) algorithms, to optical and radar images from four flood events. Our results demonstrate that the U-Net model achieves significantly higher accuracy (88%) in identifying flood-affected areas compared to the FCN model (55% accuracy). This superior performance is further supported by the mean intersection over union (mIoU) values, with U-Net achieving 0.65, compared to 0.55 for FCN. The key message of this investigation is that deep learning, particularly the U-Net model, applied to remote sensing data holds significant promise for enhancing flood monitoring, early warning systems, and disaster management strategies by enabling more accurate and timely flood assessments.
Czasopismo
Rocznik
Strony
557--575
Opis fizyczny
Bibliogr. 64 poz.
Twórcy
  • Department of Civil Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
  • Department of Civil Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
  • Department of Civil Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Bibliografia
  • 1. B Basnyat N Roy A Gangopadhyay (2021) Flood detection using semantic segmentation and multimodal data fusion. In, 2021 IEEE international conference on pervasive computing and communications workshops and other affiliated events (PerCom Workshops), pp 135-140 IEEE https://doi.org/10.1109/PerComWorkshops51409.2021.9430985
  • 2. Bentivoglio R, Isufi E, Jonkman SN, Taormina R (2022) Deep learning methods for flood mapping: a review of existing applications and future research directions. Hydrology and Earth Sys¬tem Sciences Discussions 2022:1-50. https://doi.org/10.5194/hess-26-4345-2022
  • 3. Bergsma EW, Almar R, Maisongrande P (2019) Radon-augmented sentinel-2 satellite imagery to derive wave-patterns and regional bathymetry. Remote Sensing 11(16):1918. https://doi.org/10.3390/rs11161918
  • 4. Chen S, Wang H, Xu F, Jin YQ (2016) Target classification using the deep convolutional networks for SAR images. IEEE Trans Geosci Remote Sens 54(8):4806-4817. https://doi.org/10.1109/TGRS.2016.2551720
  • 5. Corradino C, Bilotta G, Cappello A, Fortuna L, Del Negro C (2021) Combining radar and optical satellite imagery with machine learning to map lava flows at Mount Etna and Fogo Island. Energies 14(1):197. https://doi.org/10.3390/en14010197
  • 6. Dasgupta A, Grimaldi S, Ramsankaran RAAJ, Pauwels VR, Walker JP (2018) Towards operational SAR-based flood mapping using neuro-fuzzy texture-based approaches. Remote Sens Environ 215:313-329. https://doi.org/10.1016/j.rse.2018.06.019
  • 7. Feng W, Sui H, Huang W, Xu C, An K (2018) Water body extraction from very high-resolution remote sensing imagery using deep U-Net and a superpixel-based conditional random field model. IEEE Geosci Remote Sens Lett 16(4):618-622. https://doi.org/ 10.1109/LGRS.2018.2879492
  • 8. Fernandez-Moral E, Martins R, Wolf D, Rives P (2018) A new metric for evaluating semantic segmentation: leveraging global and contour accuracy. In: 2018 IEEE. intelligent vehicles symposium (IV). https://doi.org/10.1109/IVS.2018.8500497
  • 9. Garcia D, Mateo-Garcia G, Bernhardt H, Hagensieker R, Francos IGL, Stock J, Kalaitzis F (2020) Pix2Streams: Dynamic hydrology maps from satellite-LiDAR fusion. arXiv preprint arXiv:2011.07584.https://arxiv.org/abs/2011.07584
  • 10. Gebrehiwot A, Hashemi-Beni L, Thompson G, Kordjamshidi P, Langan TE (2019) Deep convolutional neural network for flood extent mapping using unmanned aerial vehicles data. Sensors 19(7):1486. https://doi.org/10.3390/s19071486
  • 11. Ghosh B, Garg S, Motagh M (2022) Automatic flood detection from Sentinel-1 data using deep learning architectures. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci 3:201-208. https://doi.org/10.5194/isprs-annals-V-3-2022-201-2022
  • 12. Ghosh B, Garg S, Motagh M, Martinis S (2024) Automatic flood detection from Sentinel-1 data using a nested UNet model and a NASA benchmark dataset. PFG-J Photogramm Remote Sens Geoinf Sci 92(1):1-18. https://doi.org/10.1007/s41064-024-00275-1
  • 13. Hashemi-Beni L, Gebrehiwot AA (2021) Flood extent mapping: an integrated method using deep learning and region growing using
  • 14. UAV optical data. IEEE J Sel Top Appl Earth Observ Remote Sens 14:2127-2135. https://doi.org/10.1109/JSTARS.2021.30518 73
  • 15. He S, Du H, Zhou G, Li X, Mao F, Zhu DE, Luo X (2020) Intelligent mapping of urban forests from high-resolution remotely sensed imagery using object-based u-net-densenet-coupled network. Remote Sensing 12(23):3928. https://doi.org/10.3390/rs12233928
  • 16. Helleis M, Wieland M, Krullikowski C, Martinis S, Plank S (2022) Sentinel-1-based water and flood mapping: benchmarking convolutional neural networks against an operational rule-based processing chain. IEEE J Sel Top Appl Earth Observ Remote Sens 15:2023-2036. https://doi.org/10.1109/JSTARS.2021.3051873
  • 17. Hernandez D, Cecilia JM, Cano JC, Calafate CT (2022) Flood detection using real-time image segmentation from unmanned aerial vehicles on edge-computing platform. Remote Sensing 14(1):223. https://doi.org/10.3390/rs14010223
  • 18. Jahangir MH, Reineh SMM, Abolghasemi M (2019) Spatial predication of flood zonation mapping in Kan River Basin, Iran, using artificial neural network algorithm. Weather Clim Extrem 25:100215. https://doi.org/10.1016/j.wace.2019.100215
  • 19. Jain P, Schoen-Phelan B, Ross R (2020) Automatic flood detection in SentineI-2 images using deep convolutional neural networks. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp 617-623. https://doi.org/10.1145/3341105.3374023
  • 20. Jakhar D, Kaur I (2020) Artificial intelligence, machine learning and deep learning: definitions and differences. Clin Exp Dermatol 45(1):131-132. https://doi.org/10.1111/ced.14029
  • 21. Jones JW (2019) Improved automated detection of subpixel-scale inundation—revised dynamic surface water extent (DSWE) partial surface water tests. Remote Sensing 11(4):374. https://doi.org/10.3390/rs11040374
  • 22. Kang W, Xiang Y, Wang F, Wan L, You H (2018) Flood detection in Gaofen-3 SAR images via fully convolutional networks. Sensors 18(9):2915. https://doi.org/10.3390/s18092915
  • 23. Kattenborn T, Leitloff J, Schiefer F, Hinz S (2021) Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J Photogramm Remote Sens 173:24-49. https://doi.org/10.1016/j.isprsjprs.2020.12.010
  • 24. Ketkar N, Santana E (2017) Deep learning with Python, vol 1. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-2766-4
  • 25. Kumthekar A, Reddy GR (2021) An integrated deep learning framework of U-Net and inception module for cloud detection of remote sensing images. Arab J Geosci 14(18):1900. https://doi. org/10.1007/s12517-021-08259-w
  • 26. J Kuruvilla D Sukumaran A Sankar SP 2016Joy (2016) A review on image processing and image segmentation. In: international conference on data mining and advanced computing (SAPIENCE), pp 198-203 IEEE https://doi.org/10.1109/SAPIENCE.2016.7684170
  • 27. Leichtle T, GeiB C, Wurm M, Lakes T, Taubenbock H (2017) Unsupervised change detection in VHR remote sensing imagery-an object-based clustering approach in a dynamic urban environment. Int J Appl Earth Obs Geoinformation 54:15-27. https://doi.org/10.1016/j.jag.2016.08.010
  • 28. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. Proc IEEE conf computer vision pattern recognit 3431-3440
  • 29. Lv N, Chen C, Qiu T, Sangaiah AK (2018) Deep learning and superpixel feature extraction based on contractive autoencoder for change detection in SAR images. IEEE Trans Ind Inform 14(12):5530-5538. https://doi.org/10.1109/TII.2018.2873492
  • 30. Lv S, Meng L, Edwing D, Xue S, Geng X, Yan XH (2022) High- performance segmentation for flood mapping of HISEA-1 SAR remote sensing images. Remote Sens 14(21):5504. https://doi.org/10.3390/rs14215504
  • 31. Maggiori E, Tarabalka Y, Charpiat G, Alliez P (2016) Fully convolutional neural networks for remote sensing image classification. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp 5071-5074.
  • 32. Mateo-Garcia G, Veitch-Michaelis J, Smith L, Oprea SV, Schumann G, Gal Y, Backes D (2021) Towards global flood mapping onboard low-cost satellites with machine learning. Sci Rep 11(1):7249. https://doi.org/10.1038/s41598-021-86650-z
  • 33. McCormack T, Campanya J, Naughton O (2022) A methodology for mapping annual flood extent using multi-temporal Sentinel-1 imagery. Remote Sens Environ 282:113273. https://doi.org/10.1016/j.rse.2022.113273
  • 34. Merz B, Aerts JCJH, Arnbjerg-Nielsen K, Baldi M, Becker A, Bichet A, Nied M (2014) Floods and climate: emerging perspectives for flood risk assessment and management. Nat Hazards Earth Syst Sci 14(7):1921-1942. https://doi.org/10.5194/ nhess-14-1921-2014
  • 35. Mohney D (2020) Terabytes from space: satellite imaging is filling data centers. Data Cent Front. https://www. datac enter frontier. com/internet-of-things/ artic le/ 11 429032/ terabytes-from-space-satellite-imaging-is-filling-data-centers
  • 36. Nemni E, Bullock J, Belabbes S, Bromley L (2020) Fully convolutional neural network for rapid flood segmentation in synthetic aperture radar imagery. Remote Sens 12(16):2532. https://doi.org/10.3390/rs12162532
  • 37. Pally RJ, Samadi S (2022) Application of image processing and convolutional neural networks for flood image classification and semantic segmentation. Environ Model Softw 148:105285. https://doi.org/10.1016/j.envsoft.2021.105285
  • 38. Rahman MA, Wang Y (2016) Optimizing intersection-over-union in deep neural networks for image segmentation. Int symp vis comput 234-244. Springer, Cham
  • 39. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp 234-241. Springer International Publishing. https://doi.org/10.1007/978-3-319-24574-4_28
  • 40. Ruby U, Yendapalli V (2020) Binary cross entropy with deep learning technique for image classification. Int J Adv Trends Comput Sci Eng 9(10)
  • 41. Roohi M, Soleymani K, Salimi M, Heidari M (2020) Numerical evaluation of the general flow hydraulics and estimation of the river plain by solving the Saint-Venant equation. Modeling Earth Systems and Environment 6:645-658. https://doi.org/10.1007/s40808-020-00718-9
  • 42. Roohi M, Faeli M, Irani M, Shamsaei E (2021) Calculation of land subsidence and changes in soil moisture and salinity using remote sensing techniques. Environ Earth Sci 80(12):423. https://doi.org/10.1007/s12665-021-09723-2
  • 43. Roohi M, Faeli M, Jamshidi F, Ghasroddashti AP (2023) Snow parameters modeling using remote sensing techniques and HEC-HMS hydrological modeling—case study: Kan Basin. Environ Monit Assess 195(6):684. https://doi.org/10.1007/s10661-023-11326-2
  • 44. Roohi M, Ghafouri HR, Ashrafi SM (2024) Developing an ensem¬ble machine learning approach for enhancing flood damage assessment. Int J Enviro Res 18(5):90. https://doi.org/10.1007/s41742-024-00647-w
  • 45. Safavi F, Rahnemoonfar M (2022) Comparative study of real-time semantic segmentation networks in aerial images during flooding events. IEEE J Sel Top Appl Earth Observ Remote Sens 16:15-31. https://doi.org/10.1109/JSTARS.2022.3219724
  • 46. Sanderson J, Tengtrairat N, Woo WL, Mao H, Al-Nima RR (2023) XFIMNet: an explainable deep learning architecture for versatile flood inundation mapping with synthetic aperture radar and
  • 47. multi-spectral optical images. Int J Remote Sens 44(24):7755-7789. https://doi.org/10.1080/01431161.2023.2288945
  • 48. Sarker C, Mejias L, Maire F, Woodley A (2019) Evaluation of the impact of image spatial resolution in designing a context-based fully convolution neural networks for flood mapping. In 2019 Digital Image Computing: Techniques and Applications (DICTA), pp 1-8 IEEE https://doi.org/10.1109/DICTA47822.2019.8945888
  • 49. Shakya A, Biswas M, Pal M (2020) CNN-based fusion and classification of SAR and Optical data. Int J Remote Sens 41(22):8839-8861. https://doi.org/10.1080/19479832.2021.2019133
  • 50. Shamsolmoali P, Zareapoor M, Wang R, Zhou H, Yang J (2019) A novel deep structure U-Net for sea-land segmentation in remote sensing images. IEEE J Sel Top Appl Earth Observ Remote Sens 12(9):3219-3232. https://doi.org/10.1109/JSTARS.2019.2925841
  • 51. Shao Z, Zhou W, Deng X, Zhang M, Cheng Q (2020) Multilabel remote sensing image retrieval based on fully convolutional network. IEEE J Sel Top Appl Earth Observ Remote Sens 13:318-328. https://doi.org/10.1109/JSTARS.2019.2961634
  • 52. Shao Z, Wu W, Li D (2021) Spatio-temporal-spectral observation model for urban remote sensing. Geo-Spatial Inf Sci 24(3):372-386. https://doi.org/10.1080/10095020.2020.1864232
  • 53. Shastry A, Carter E, Coltin B, Sleeter R, McMichael S, Eggleston J (2023) Mapping floods from remote sensing data and quantifying the effects of surface obstruction by clouds and vegetation. Remote Sens Environ 291:113556. https://doi.org/10.1016/j.rse.2023.113556
  • 54. Shinde PP, Shah S (2018) A review of machine learning and deep learning applications. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp 1-6. IEEE. https://doi.org/10.1109/ICCUBEA.2018.8697857
  • 55. Su Y, Li J, Plaza A, Marinoni A, Gamba P, Chakravortty S (2019) DAEN: Deep autoencoder networks for hyperspectral unmixing. IEEE Trans Geosci Remote Sens 57(7):4309-4321. https://doi.org/10.1109/TGRS.2018.2890633
  • 56. Su Z, Li W, Ma Z, Gao R (2022) An improved U-Net method for the semantic segmentation of remote sensing images. Appl Intell 52(3):3276-3288. https://link.springer.com/article/https://doi.org/10.1007/s10489-021-02542-9
  • 57. Tellman B, Sullivan JA, Kuhn C, Kettner AJ, Doyle CS, Brakenridge GR, Slayback DA (2021) Satellite imaging reveals increased proportion of population exposed to floods. Nature 596(7870):80-86. https://doi.org/10.1038/s41586-021-03695-w
  • 58. Uddin K, Matin MA, Meyer FJ (2019) Operational flood mapping using multi-temporal Sentinel-1 SAR images: a case study from Bangladesh. Remote Sens 11(13):1581. https://doi.org/10.3390/rs11131581
  • 59. Wang Y, Fang Z, Hong H, Peng L (2020) Flood susceptibility mapping using convolutional neural network frameworks. J Hydrol 582:124482. https://doi.org/10.1016/j.jhydrol.2019.124482
  • 60. Wang R, Zhang C, Chen C, Hao H, Li W, Jiao L (2024) A multi-modality fusion and gated multi-filter U-Net for water area segmentation in remote sensing. Remote Sens 16(2):419. https://doi.org/10.3390/rs16020419
  • 61. Wieland M, Martinis S, Kiefl R, Gstaiger V (2023b) Semantic segmentation of water bodies in very high-resolution satellite and aerial images. Remote Sens Environ 287:113452. https://doi.org/10.1016/j.rse.2023.113452
  • 62. Wieland M, Fichtner F, Martinis S, Groth S, Krullikowski C, Plank S, Motagh M (2023) S1S2-Water: A global dataset for semantic segmentation of water bodies from Sentinel-1 and Sentinel-2 satellite images. https://doi.org/10.1109/JSTARS.2023.3333969
  • 63. Xu H (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27(14):3025-3033. https://doi.org/10.1080/01431160600589179
  • 64. Yazdi J, Golian S, Roohi M (2017) Determining Checkdams layout for flood mitigation using simulation-optimization approach.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-094ed0db-2896-4db5-87bc-e22547ff210d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.